精英家教网 > 初中数学 > 题目详情
18.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA中点,点P在BC上以每秒1个单位的速度由C向B运动,设运动时间为t秒.
(1)△ODP的面积S=10.
(2)t为何值时,四边形PODB是平行四边形?
(3)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由;
(4)若△OPD为等腰三角形,请写出所有满足条件的点P的坐标(请直接写出答案,不必写过程)

分析 (1)根据三角形的面积公式即可求出△ODP的面积S;
(2)由于PB∥OD,根据平行四边形的判定可知当PB=OD=5时,四边形PODB是平行四边形,再求出PC=5,从而求出t的值;
(3)根据菱形的判定,当OD=OP=PQ=5时,ODQP为菱形,在Rt△OPC中,利用勾股定理求出CP的值,进而求出t的值及Q点的坐标;
(4)当△OPD为等腰三角形时,分三种情况进行讨论:①如果O为顶点,那么OP=OD=5;②如果P为顶点,那么PO=PD;③如果D为顶点,那么DP=DO=5.

解答 解:(1)∵O为坐标原点,A(10,0),四边形OABC为矩形,C(0,4),
∴OA=BC=10,OC=4,
∵点D是OA中点,
∴OD=DA=$\frac{1}{2}$OA=5,
∴△ODP的面积S=$\frac{1}{2}$OD•OC=$\frac{1}{2}$×5×4=10.
故答案为10;

(2)∵PB∥OD,
∴当PB=OD时,四边形PODB是平行四边形,
∵OD=5,
∴PB=5,
∴PC=BC-PB=10-5=5,
∵点P在BC上以每秒1个单位的速度由C向B运动,
∴t=5;

(3)当OD=OP=PQ=5时,ODQP为菱形,
在Rt△OPC中,由勾股定理得:
PC=$\sqrt{O{P}^{2}-O{C}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3,
∴t=3,CQ=CP+PQ=3+5=8,
∴Q点的坐标为(8,4);

(4)△OPD为等腰三角形时,分三种情况:
①如果O为顶点,那么OP=OD=5,
由勾股定理可以求得PC=3,此时P1(3,4);
②如果P为顶点,那么PO=PD,
作PE⊥OA于E,则OE=ED=2.5,此时P2(2.5,4);
③如果D为顶点,那么DP=DO=5,
作DF⊥BC于F,由勾股定理,得PF=3,
∴P3C=5-3=2或P4C=5+3=8,此时P3(2,4),P4(8,4).
综上所述,满足条件的点P的坐标为P1(3,4),P2(2.5,4),P3(2,4),P4(8,4).

点评 本题是四边形综合题,考查了矩形的性质,坐标与图形的性质,等腰三角形的性质,平行四边形的判定及性质,菱形的判定及性质,勾股定理的运用.利用数形结合、分类讨论是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.下列调查中,最适宜采用普查方式的是(  )
A.对我国初中学生视力状况的调查
B.对量子科学通信卫星上某种零部件的调查
C.对一批节能灯管使用寿命的调查
D.对“最强大脑”节目收视率的调查

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.圆心为P(m,n),半径为1的圆与平面直角坐标系的两坐标轴都相交,则m+n的值可能是(  )
A.-2B.2C.-$\frac{1}{2}$D.3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有4个,若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a大约是(  )
A.25B.20C.15D.10

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=4,CD=1,则EC的长为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图是一个某种规律排列的数阵:

根据数阵的规律,第n行倒数第二个数是 (用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.“十年树木,百年树人”,教师的素养关系到国家的未来.扬州市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见表:
序号123456
笔试成绩669086646684
专业技能测试成绩959293808892
说课成绩857886889485
(1)笔试成绩的平均数是76;
(2)写出说课成绩的中位数为85.5,众数为85;
(3)已知序号为1,2,3,4号选手的总分成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在Rt△ABC中,∠C=90°,BC=6,AB=10,则tanA=$\frac{3}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(  )
A.$\frac{\sqrt{3}}{8}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{8}$

查看答案和解析>>

同步练习册答案