精英家教网 > 初中数学 > 题目详情
17.化简:(a+3)2-a(a+2).

分析 原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.

解答 解:原式=a2+6a+9-a2-2a
=4a+9.

点评 此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则$\frac{{S}_{正方形MNPQ}}{{S}_{正方形AEFG}}$的值等于$\frac{8}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,已知四边形ABEC内接于⊙O,点D在AC的延长线上,CE平分∠BCD交⊙O于点E,则下列结论中一定正确的是(  )
A.AB=AEB.AB=BEC.AE=BED.AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如,下图中的函数有0,1两个不变值,其不变长度q等于1.
(1)分别判断函数y=x-1,y=$\frac{1}{x}$,y=x2有没有不变值?如果有,直接写出其不变长度;
(2)函数y=2x2-bx.
①若其不变长度为零,求b的值;
②若1≤b≤3,求其不变长度q的取值范围;
(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2.函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.小华在一本书的第一页写1,第二页写2、3,第三页写3、4、5,第四页写4,5,6,7,…,按此规律写下去,若书的页数足够多,则他第一次写出数字50是在第26页.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.
(1)求过A、B、C三点的抛物线的解析式;
(2)设点M是x轴上的动点,在平面直角坐标系中,存在点N,使得以点A、B、M、N为顶点的四边形是菱形.请直接写出所有符合条件的点N的坐标;
(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,并选择其中一个的加以说明;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.生物学家发现一种病毒的长度约为0.00000402毫米,数据0.00000402用科学记数法表示(  )
A.0.402×10-5B.4.02×10-6C.4.02×10-7D.40.2×10-7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:|$\sqrt{3}$-2|-(-2)2+2sin60°-(2π-1)0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:$\sqrt{8}$-(π-1)0-4sin45°+(-$\frac{1}{2}$)-2=3.

查看答案和解析>>

同步练习册答案