精英家教网 > 初中数学 > 题目详情

【题目】在三角形ABC中,AB=AC,D是底边上的中点,BE垂直AC于点E,①∠ABC=ACB;ADBC;③∠BAD=CBE;AB=2BD,其中正确的有___________.

【答案】①②③

【解析】

如图所示,由AB=AC,根据等边对等角得到①结论正确;由AB=AC,DBC中点,根据等腰三角形三线合一的性质得到ADBC,得到②结论正确;在△ABD和△BCE中根据已知条件和三角形内角和定理可以得到③结论正确;ABBD无数量关系,得到④结论错误.

①∵AB=AC,

∴∠ABC=ACB,①结论正确;

②∵AB=AC,DBC中点,

ADBC,②结论正确;

③∵AB=AC,

∴∠ABC=ACB,

AB=AC,DBC中点,

ADBC,

BEAC

∴∠ADB=BEC,

∴∠BAD=CBE③结论正确;

④AB与BD无数量关系,故④错误.

故答案为:①②③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某书店响应国家中华优秀传统文化经典进书店的号召,用2100元购进某经典读本若干套,很快售完,该店又用4500元购进第二批该经典读本若干套,进货量是第一批的2倍,但每套的进价比第一批提高了10元.求:

(1)该店这两批经典读本各购进多少套?

(2)若第一批该经典读本的售价是170元套,该店经理想让这两批经典读本售完后的总利润不低于1950元,则第二批该经典读本每套至少要售多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DBC的中点,DEABEDFACFBE=CF

1)求证:AD平分∠BAC

2)连接EF,求证:AD垂直平分EF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A

(1)求抛物线的解析式;
(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;
(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:
①∠APB=120°;②AF+BE=AB.
那么,当AM∥BN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;
(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数 的图象恰好经过斜边A′B的中点C,SABO=4,tan∠BAO=2,则k的值为(  )

A.3
B.4
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答为得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:

组别

分数段

频数(人)

频率

1

50≤x<60

30

0.1

2

60≤x<70

45

0.15

3

70≤x<80

60

n

4

80≤x<90

m

0.4

5

90≤x<100

45

0.15

请根据以图表信息,解答下列问题:

(1)表中m= , n=
(2)补全频数分布直方图;
(3)全体参赛选手成绩的中位数落在第几组;
(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,图①是边长为1的等边三角形纸板,周长记为C1,沿图①的底边剪去一块边长为的等边三角形,得到图②,周长记为C2,然后沿同一底边依次剪去一块更小的等边三角形纸板(即其边长为前一块被剪掉等边三角形纸板边长的),得图③④,图n的周长记为Cn,若n≥3,则Cn-Cn-1=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明一家利用国庆八天驾车到某景点旅游,小汽车出发前油箱有油35L,行驶若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系如图所示,根据图像回答下列问题:

(1)小汽车行驶______h后加油,中途加油_______L

(2)求加油前油箱余油量Q与行驶时间t的函数关系式

(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点200km,车速80km/h,要到达目的地,油箱中的油是否够用?请说明理由

查看答案和解析>>

同步练习册答案