精英家教网 > 初中数学 > 题目详情
10.如图,已知梯形ABCD中,AB∥CD,对角线AC、BD相交于点O,那么下列结论正确的是(  )
A.△AOD∽△BOCB.△ACD∽△BDCC.△AOB∽△CODD.△ABD∽△BAC

分析 利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似进行判断.

解答 解:∵AB∥CD,
∴△AOB∽△COD.
故选C.

点评 本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.甲、乙二人各射击5次,命中环数如表
第1次第2次第3次第4次第5次
78686
95678
那么射击技术稳定的是甲.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.当x=1时,代数式2ax2+3bx+8=12,求x=-3时,代数式18bx-4ax2+7=-65.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE,BD和CE相交于点F,若△ABC不动,将△ADE绕点A任意旋转一个角度.
(1)求证:△BAD≌△CAE.
(2)如图①,若∠BAC=∠DAE=90°,判断线段BD与CE的关系,并说明理由;
(3)如图②,若∠BAC=∠DAE=60°,求∠BFC的度数;
(4)如图③,若∠BAC=∠DAE=a,直接写出∠BFC的度数(不需说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)探究:已知,如图是一个三角形点阵,从上向下数有无数多行,其中第一行有一个点,第二行有两个点…第n行有n个点…容易发现,10是三角形点阵中前4行的点数和.
①求三角形点阵中前10行的点数和;
②若三角形点阵中前a行的点数之和为300,求a的值;
③三角形点阵中前b行的点数之和能是600吗?若能,求出b的值;若不能,请说明理由.
(2)拓展:若果把(1)的三角形点阵中各行的点数依次换为2,4,6,…,2n,…,
①求这个三角形点阵中前n行点数和(用含n的代数式表示);
②这个三角形点阵中前n行点数和能是600吗?若能,求出n;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22-12,16=52-32).已知按从小到大顺序构成如下列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2013个“智慧数”是2687.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若CD=2AD,⊙O的直径为20,求线段AC、AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.填空:
(1)$\frac{-xy}{y-x}$═$\frac{()}{x-y}$;
(2)$\frac{7x}{x-y}$=$\frac{7xy}{()}$;
(3)$\frac{{x}^{2}-3x}{5x}$=$\frac{()}{5}$;
(4)$\frac{3{x}^{2}y}{2x{y}^{2}}$=$\frac{()}{2y}$;
(5)$\frac{(x+y)^{2}}{{x}^{2}-{y}^{2}}$=$\frac{()}{x-y}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程:3x2-1=4x.

查看答案和解析>>

同步练习册答案