精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形中,边长,两动点分别从同时出发,点沿匀速运动,每秒,点沿匀速运动,每秒,两点中有一点到达矩形的顶点则运动停止.设运动时间为秒,的面积为

1)求的函数关系式,并写出的取值范围;

2)当两点运动多少秒时,的面积为

3)当取何值时,的面积最大?并求出其最大面积.

【答案】(1) ;(2)当两点运动2秒时,的面积为;(3)当时,的面积最大,最大面积为

【解析】

1)根据题意可知,由矩形面积公式即可求出面积的函数关系式,根据BC的长求出x的取值;

2)令y=14即可求出x的值,根据x的取值范围即可得出答案;

3)根据二次函数的图像与性质即可求出最值.

解:(1)在矩形中,

4÷1=4(秒)

的取值范围:

2)由(1)知:

,又

,应取.

两点运动2秒时,的面积为

3

,开口向下,对称轴

时,的增大而增大.

时,

时,的面积最大,最大面积为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.

(1)请判断四边形EBGD的形状,并说明理由;

(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+x1x轴交于点AB(A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线lyt(t)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.

(1)ABD的坐标分别为         

(2)如图,抛物线翻折后,点D落在点E处.当点E在△ABC(含边界)时,求t的取值范围;

(3)如图,当t0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:

如图1,在等边△ABC中,AB9,⊙C半径为3P为圆上一动点,连结APBP,求AP+BP的最小值

(1)尝试解决:

为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将BP转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)

如图2,连结CP,在CB上取点D,使CD1,则有

又∵∠PCD=∠   

   ∽△   

PDBP

AP+BPAP+PD

∴当APD三点共线时,AP+PD取到最小值

请你完成余下的思考,并直接写出答案:AP+BP的最小值为   

(2)自主探索:

如图3,矩形ABCD中,BC6AB8P为矩形内部一点,且PB4,则AP+PC的最小值为   (请在图3中添加相应的辅助线)

(3)拓展延伸:

如图4,在扇形COD中,O为圆心,∠COD120°OC4OA2OB3,点P上一点,求2PA+PB的最小值,画出示意图并写出求解过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+ca0)的顶点为M,直线ym与抛物线交于点AB,若AMB为等腰直角三角形,我们把抛物线上AB两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.

1)由定义知,取AB中点N,连结MNMNAB的关系是_____

2)抛物线y对应的准蝶形必经过Bmm),则m_____,对应的碟宽AB_____

3)抛物线yax24aa0)对应的碟宽在x 轴上,且AB6

①求抛物线的解析式;

②在此抛物线的对称轴上是否有这样的点Pxpyp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点BCE在同一水平直线上),已知AB=80mDE=10m,求障碍物BC两点间的距离(结果精确到0.1m)(参考数据:≈1.414≈1.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB

1)求证:DC为⊙O的切线;

2)若⊙O的半径为3AD=4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为ABCD四个等级.请根据两幅统计图中的信息回答下列问题:

1)本次抽样调查共抽取了多少名学生?

2)求测试结果为C等级的学生数,并补全条形图;

3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?

4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点的中点,点是边上一点,,交的延长线于点,交边于点,过点,垂足为点分别交于点

1)求证:

2)设,求关于的函数关系式及其定义域;

3)当是以为腰的等腰三角形时,求线段的长.

查看答案和解析>>

同步练习册答案