精英家教网 > 初中数学 > 题目详情
3.如图,六边形ABCDEF∽六边形GHIJKL,相似比为2:1,则下列结论正确的是(  )
A.∠B=2∠K
B.六边形ABCDEF的周长=六边形GHIJKL的周长
C.BC=2HI
D.S六边形ABCDEF=2S六边形GHIJKL

分析 根据相似多边形的性质对各选项进行逐一分析即可.

解答 解:A、∵六边形ABCDEF∽六边形GHIJKL,∴∠E=∠K,故本选项错误;
B、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴六边形ABCDEF的周长=六边形GHIJKL的周长×2,故本选项错误;
C、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴BC=2HI,故本选项正确;
D、∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴S六边形ABCDEF=4S六边形GHIJKL,故本选项错误.
故选C.

点评 本题考查的是相似多边形的性质,即两个相似多边形的对应角相等,周长的比等于相似比,面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.快递员骑电动三轮车从仓库出发,先向东行驶了2km到达A区,继续向东行驶4km到达B区,然后又向西行驶了11km到达C区,最后回到仓库.
(1)以仓库为原点,向东为正方向,用一个单位长度表示1km,画出数轴,并在数轴上表示出A,B,C三个区的位置;
(2)C区距A区有多远?
(3)快递员一共行驶了多少km?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知线段AB=20cm,点M是线段AB的中点,点C是AB延长线上一点,AC=3BC,点D是线段BA延长线上一点,AD=AB.
(1)求线段BC的长;
(2)求线段DC的长;
(3)点M还是哪些线段的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)如图,木棒AB位于点光源P和地面CD之间,AB∥CD,若光源P到木棒AB的距离是1米,木棒AB到底面的距离也为1米,测得木棒AB的长度为2米,求木棒AB在地面的影长CD;
(2)若木棒AB=2米,木棒AB始终保持与地面CD平行,且木棒AB到底面的距离也为1米,类.比(1)的探究方法,填写如表:
光源P到木棒AB的距离木棒AB在地面的影长
1米
2米3
3米$\frac{8}{3}$
….
结论:平行于地面的线段长度一定,到地面的距离一定,则其上方的光源逐渐远离线段时,该线段在地面上的影长逐渐变小(填“变大”或“变小”).
(3)平行于地面的线段长度一定,其上方的光源到该线段的距离一定,则当线段逐渐远离地面时,该线段在地面上的影长逐渐变大(填“变大”或“变小”).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,在△ABC中,AB=AC,∠A=40°,以C为圆心,CB的长为半径画弧,交AB于点D,连接CD,则∠ACD等于(  )
A.20°B.30°C.40°D.50°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)(+$\frac{1}{4}$)+(-2$\frac{1}{3}$)-(-2$\frac{3}{4}$)-(+3$\frac{2}{3}$);
(2)(-42)÷(-$\frac{6}{7}$)-24×(-5);
(3)(1$\frac{1}{2}$-2$\frac{1}{4}$+1$\frac{1}{6}$)×(-12);
(4)-23×52-[2-(-10)2].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在等腰△ABC中,AB=AC=10cm,BC=12cm,求BC边上的高AD及△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,AB∥CD,∠B=26°,∠D=39°,求∠BED的度数.
解:过点E作EF∥AB,
∴∠1=∠B=26°两直线平行,内错角相等
∵AB∥CD(已知),EF∥AB(所作),
∴EF∥CD.(如果两条直线都与第三条直线平行,那么这两条直线也平行 )
∴∠2=∠D=39°(两直线平行,内错角相等)
∴∠BED=∠1+∠2=65°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若AB=4,AC=2$\sqrt{3}$,
求:(1)∠A的度数; 
(2)弦CD的长; 
(3)弓形CBD的面积.

查看答案和解析>>

同步练习册答案