精英家教网 > 初中数学 > 题目详情
15.先化简$\frac{{x}^{2}-4x+4}{{x}^{2}-2x}$÷(x-$\frac{4}{x}$),然后从0,1,2中任选一个合适的数作为x的值代入求值.

分析 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=1代入计算即可求出值.

解答 解:$\frac{{x}^{2}-4x+4}{{x}^{2}-2x}$÷(x-$\frac{4}{x}$),
=$\frac{(x-2)^{2}}{x(x-2)}$÷$\frac{(x+2)(x-2)}{x}$,
=$\frac{x-2}{x}$×$\frac{x}{(x+2)(x-2)}$,
=$\frac{1}{x+2}$.
当x=1时,原式=$\frac{1}{2+1}$=$\frac{1}{3}$.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.在平面直角坐标系中点A(4,0)绕点P(x,y)顺时针旋转90°至B(1,m),若1≤m≤3,则P点运动的路径$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=70°,则∠ABD=(  )
A.30°B.40°C.50°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.
(1)请你根据勾股数的意思,说明3、4、5是一组勾股数;
(2)写出一组不同于3、4、5的勾股数12,16,20;
(3)如果m表示大于1的整数,且a=4m,b=4m2-1,c=4m2+1,请你根据勾股数的定义,说明a、b、c为勾股数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知a与b互为相反数,c与d互为倒数,x的绝对值等于2,求x3-(a+b)2014+(-cd)2015的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.甲乙两城市之间有一条公路相连,公路中途穿过丙市,现有两位司机M、N相约各自同时从甲乙两地出发,途中M将一件物品交给N,已知M从甲市到丙市,N从乙市到甲市,N的速度是M的0.75,他们开车距离丙市的距离y(千米)与行驶的时间t(小时)的函数图象如图所示.
(1)求a的值;
(2)求AB所在直线的函数解析式及C点的坐标;
(3)何时他们相距300千米?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,点O为Rt△ABC斜边AC上一点,以点O为圆心,OC长为半径的⊙O与AB相切于点D,分别交AC,BC于点G,E.
(1)求证:$\widehat{DG}$=$\widehat{DE}$.
(2)若DE∥AC,BE=1,求AG和$\widehat{DG}$的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在⊙O中,半径OA长为1,弦BC∥OA,射线BO,射线CA交于点D,以点D为圆心,CD为半径的⊙D交BC延长线于点E.
(1)若BC=$\frac{8}{5}$,求⊙O与⊙D公共弦的长;
(2)当△ODA为等腰三角形时,求BC的长;
(3)设BC=x,CE=y,求y关于x的函数关系式,并写出定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5. 如图,第一象限内的点A、B在反比例函数的图象上,点C在y轴上,BC∥x轴,点A的坐标为(2,4),且tan∠ACB=$\frac{2}{3}$
求:(1)反比例函数的解析式;
(2)点C的坐标;
(3)sin∠ABC的值.

查看答案和解析>>

同步练习册答案