精英家教网 > 初中数学 > 题目详情

1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O

如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.

另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按ABCDA移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).

正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.

(1)请你在图2和图3中分别画出x2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;

(2)①如图4,当1x3.5时,求yx的函数关系式;

②如图5,当3.5x7时,求yx的函数关系式;

③如图6,当7x10.5时,求yx的函数关系式;

④如图7,当10.5x13时,求yx的函数关系式.

(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为14分)

 解:(1)相应的图形如图1,2.
当x=2时,y=3;
当x=18时,y=18.

image.png

(2)①当1≤x≤3.5时,如图3,
延长MN交AD于K,
设MN与HG交于S,MQ与FG交于T,则MK=6+x,SK=TQ=7-x,从而MS=MK-SK=2x-1,MT=MQ-TQ=6-(7-x)=x-1.
∴y=MT?MS=(x-1)(2x-1)=2x2-3x+1.
②当3.5≤x≤7时,如图4,
设FG与MQ交于T,则
TQ=7-x,
∴MT=MQ-TQ=6-(7-x)=x-1.
∴y=MN?MT=6(x-1)=6x-6.
③当7≤x≤10.5时,如图5,
设FG与MQ交于T,则
TQ=x-7,
∴MT=MQ-TQ=6-(x-7)=13-x.
∴y=MN?MT=6(13-x)=78-6x.
④当10.5≤x≤13时,如图6,
设MN与EF交于S,NP交FG于R,延长NM交BC于K,则MK=14-x,SK=RP=x-7,
∴SM=SK-MK=2x-21,从而SN=MN-SM=27-2x,NR=NP-RP=13-x.
∴y=NR?SN=(13-x)(27-2x)=2x2-53x+351.

(3)对于正方形MNPQ,
①在AB边上移动时,当0≤x≤1及13≤x≤14时,y取得最小值0;
当x=7时,y取得最大值36.
②在BC边上移动时,当14≤x≤15及27≤x≤28时,y取得最小值0;
当x=21时,y取得最大值36.
③在CD边上移动时,当28≤x≤29及41≤x≤42时,y取得最小值0;
当x=35时,y取得最大值36.
④在DA边上移动时,当42≤x≤43及55≤x≤56时,y取得最小值0;
当x=49时,y取得最大值36.


分析:(1)当x=2时,Q离AD的距离为6+2=8,而G离AD的距离为7-2=5,因此重合部分的长为3.同理可求得重合部分的宽为1,因此y=3.
当x=18时,正方形MNPQ走完AB需14秒,因此x=18时,正方形MNPQ在BC边上运动了4秒,而正方形EHFG扩张到最大需7秒再缩小到原来的大小需7秒,因此x=18时,正方形EHFG重复第二次运动,且第二次运动过程中运动了4秒,因此MN离AB的距离为6+4=10,OP离AB的距离为4,因此重合部分的长为6,同理可求得重合部分的宽为3,y=3×6=18.
(2)①当1≤x≤3.5时,是正方形EHGF第一次向外扩张的过程,此时MK=x+6,SK=7-x,因此MS=2x-1.同理可求得SG的长,由此可得出重合部分的面积y与x的函数关系式.
②当3.5≤x≤7时,正方形EHGF第一次向内收缩,此时重合部分的长不变为MN的长即6,而EQ=x,NP=6,因此重合部分的宽为6-x,由此可得出y与x的函数关系式.
③当7≤x≤10.5时,正方形EHGF第二次向外扩张,此时重合部分的宽仍为MN的长即6,MQ=6,TQ=x-7,因此MT=13-x,由此可得出y与x的函数关系式.
④当10.5≤x≤13时,正方形EHGF第二次向内收缩,解法参照①.
(3)根据②中x不同区间的y的函数关系式,可根据各函数的性质和自变量的取值范围求出y的最大或最小值.
点评:本题为压轴题有一定难度,但难题也分层次性设计,只要平时多加积累解题经验,探解题规律,一定会有很大收获.
命题立意:考查解决大综合题的数学能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

图1至图4的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,…).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)当正方形MNPQ第一次回到起始位置时,正方形EFGH是否也变化到起始位置?
(2)请你在图2和图3中分别画出x为3秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(3)正方形EFGH第一次充满正方形ABCD之前(即x≤7时),何时正方形EFGH和正方形MNPQ重叠部分的面积为3平方单位.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

25、图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>

科目:初中数学 来源:第27章《二次函数》中考题集(46):27.3 实践与探索(解析版) 题型:解答题

图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>

科目:初中数学 来源:2008年江苏省扬州市宝应县中考数学二模试卷(解析版) 题型:解答题

图1至图4的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,…).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)当正方形MNPQ第一次回到起始位置时,正方形EFGH是否也变化到起始位置?
(2)请你在图2和图3中分别画出x为3秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(3)正方形EFGH第一次充满正方形ABCD之前(即x≤7时),何时正方形EFGH和正方形MNPQ重叠部分的面积为3平方单位.

查看答案和解析>>

科目:初中数学 来源:2006年河北省中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•河北)图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O.
如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;…),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小.
另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A?B?C?D?A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动).
正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位.
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式.
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少.(说明:问题(3)是额外加分题,加分幅度为1~4分)

查看答案和解析>>

同步练习册答案