精英家教网 > 初中数学 > 题目详情
7.如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=35°.

分析 根据等腰三角形的性质和三角形内角和定理求出∠BOC的度数,根据圆周角定理计算即可.

解答 解:∵OB=OC,∠OBC=55°,
∴∠OCB=55°,
∴∠BOC=180°-55°-55°=70°,
由圆周角定理得,∠A=$\frac{1}{2}$∠BOC=35°,
故答案为:35°.

点评 本题考查的是圆周角定理的应用和等腰三角形的性质的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.计算(-3)+(-9)的结果为-12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则$\frac{AB}{BD}$的值为(  )
A.$\frac{4\sqrt{2}}{5}$B.$\frac{\sqrt{34}}{5}$C.$\frac{5\sqrt{2}}{8}$D.$\frac{20\sqrt{2}}{23}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.
(1)观察猜想
如图1,当点D在线段BC上时,
①BC与CF的位置关系为:垂直.
②BC,CD,CF之间的数量关系为:BC=CD+CF;(将结论直接写在横线上)
(2)数学思考
如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.
(3)拓展延伸
如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2$\sqrt{2}$,CD=$\frac{1}{4}$BC,请求出GE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=$\frac{n}{x}$(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤$\frac{n}{x}$的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为(  )
A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,直线a∥b,∠1=45°,∠2=30°,则∠P=75°.

查看答案和解析>>

同步练习册答案