【题目】(阅读材料)
数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.
你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:
第一步:∵,,,
∴.
∴能确定59319的立方根是个两位数.
第二步:∵59319的个位数是9,
∴能确定59319的立方根的个位数是9.
第三步:如果划去59319后面的三位319得到数59,
而,则,可得,
由此能确定59319的立方根的十位数是3,因此59319的立方根是39.
(解答问题)
根据上面材料,解答下面的问题
(1)求110592的立方根,写出步骤.
(2)填空:__________.
【答案】(1)48;(2)28
【解析】
(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.
(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.
解:(1)第一步:,,,
,
能确定110592的立方根是个两位数.
第二步:的个位数是2,,
能确定110592的立方根的个位数是8.
第三步:如果划去110592后面的三位592得到数110,
而,则,可得,
由此能确定110592的立方根的十位数是4,因此110592的立方根是48;
(2)第一步:,,,
,
能确定21952的立方根是个两位数.
第二步:的个位数是2,,
能确定21952的立方根的个位数是8.
第三步:如果划去21952后面的三位952得到数21,
而,则,可得,
由此能确定21952的立方根的十位数是2,因此21952的立方根是28.
即,
故答案为:28.
科目:初中数学 来源: 题型:
【题目】如果抛物线y=ax2+bx+c过定点M(1,0),则称此抛物线为定点抛物线.
(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的解析式.小敏写出了一个正确的答案:y=2x2+3x-5.请你写出一个不同于小敏的答案;
(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c,求该抛物线的顶点最低时的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,H是△ABC的高AD,BE的交点,且DH=DC,则下列结论:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.
(1)求单摆的长度;
(2)求从点A摆动到点B经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题(1)如图1,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
①在图中画出与△ABC关于直线l成轴对称的△AB′C′;
②在直线l上找一点P,使PB+PC的长最短.
(2)利用网格(图2)作图,请你先在图中的BC边上找一点P,使点P到边AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC的垂直平分线DH上一点,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BF=CE.
(1)求证:AD平分∠BAC;
(2)若∠BAC=80°,求∠DCB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为( )
A. 10 B. 12 C. 16 D. 18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD的延长线于点F,连接CF.
(1)求证:四边形BCFD是菱形;
(2)若AD=1,BC=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com