精英家教网 > 初中数学 > 题目详情
(2011•黑河)已知直线y=x+4与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
解:(1)由已知得A点坐标(﹣4﹐0),B点坐标(0﹐4﹚,
∵OA=4OB=4
∴∠BAO=60°,
∵∠ABC=60°,
∴△ABC是等边三角形,
∵OC=OA=4,
∴C点坐标﹙4,0﹚,
设直线BC解析式为y=kx﹢b,


∴直线BC的解析式为y=﹣;(2分)
﹙2﹚当P点在AO之间运动时,作QH⊥x轴.


∴QH=t
∴SAPQ=AP•QH=t•t=t2﹙0<t≤4﹚,(2分)
同理可得SAPQ=t•﹙8﹚=﹣﹙4≤t<8﹚;(2分)
(3)存在,
(4,0),(﹣4,8)(﹣4,﹣8)(﹣4,).(4分)解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•黑河)已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,﹣).
(1)求此二次函数的解析式.
(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积.
注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•黑河)已知三角形相邻两边长分别为20cm和30cm,第三边上的高为10cm,则此三角形的面积为 

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(黑龙江省黑河市卷)数学 题型:解答题

(2011•黑河)已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,﹣).
(1)求此二次函数的解析式.
(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积.
注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(黑龙江省黑河市卷)数学 题型:填空题

(2011?黑河)已知三角形相邻两边长分别为20cm和30cm,第三边上的高为10cm,则此三角形的面积为 

查看答案和解析>>

同步练习册答案