精英家教网 > 初中数学 > 题目详情
5.若4x3ym-1与-$\frac{1}{2}$xn-3y4是同类项,则6,5.

分析 根据同类项的概念进行判断是否是同类项,然后根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.

解答 解:由题意,得
n-3=3,m-1=4.
解得n=6,m=5,
故答案为:6,5.

点评 本题主要考查的是同类项的概念和合并同类项的法则,掌握合并同类项的法则:系数相加作为系数,字母和字母的指数不变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.为积极响应潼南区“创国家卫生城市”活动,梓潼街道拟投资计划购买A、B两种树共200棵绿化街道,要求种植B种树的棵数不少于种植A种树棵数的3倍,且种植B种树的棵数不多于种植A种树棵数的4倍,已知A种树每棵400元,B种树每棵800元.
(1)设购买A种树x棵,购买A、B两种树的总费用为y元,请写出y与x之间的函数关系式;
(2)从节约资金的角度考虑,你认为应如何购买这两种树?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.两个数的商为正数,则两个数(  )
A.都为正B.都为负C.同号D.异号

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.函数y=$\frac{\sqrt{x-2}}{2x-5}$中自变量x的取值范围是x≥2且x≠$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.把抛物线y=x2-1向上平移1个单位,就得到抛物线y=x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=$\frac{m}{x}$(m≠0,x>0)的图象交于第一象限内的A、B两点,过点A作AC⊥x轴于点C,AC=3,点B的坐标为(2,6)
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象,请直接写出y1<y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.观察下列一组等式的化简.然后解答后面的问题:
$\frac{1}{\sqrt{2}+1}$=$\frac{1×(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1;
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{1×(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$;
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{1×(\sqrt{4}-\sqrt{3})}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=2-$\sqrt{3}$…
(1)在计算结果中找出规律$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$(n表示大于0的自然数)
(2)通过上述化简过程,可知 $\sqrt{11}$-$\sqrt{10}$<$\sqrt{12}$-$\sqrt{10}$(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2012年盈利1500万元,到2014年盈利2160万元,且从2012年到2014年,每年盈利的年增长率相同.
(1)求年增长率.
(2)若该公司盈利的年增长率继续保持不变,预计2015年盈利多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,过点C作CF⊥BC,如果点D,E分别在BC、CF上运动,并始终保持DE=EC,那么当CD=6或8时,△ABC与△DCE全等.

查看答案和解析>>

同步练习册答案