精英家教网 > 初中数学 > 题目详情
9
16
, -0.7070070007…, 
7
+
2
, 
3-9
, -
7
12
, 3.1415926, -
3
2
中,无理数的个数是(  )
A、3个B、4个C、5个D、6个
分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
解答:解:
9
16
=
3
4
是分数,-
7
12
是分数,3.1415926是小数,这三个数是有理数,
-0.7070070007…、
7
+
2
3-9
、-
3
2
这四个数是无理数.
故选B.
点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(经过原点)与x轴相交于N点,直线y=kx+4与坐标轴分别相交于精英家教网A、D两点,与抛物线相交于B(1,m)和C(2,2)两点.
(1)求直线与抛物线的表达式;
(2)求证:C点是△AOD的外心;
(3)若(1)中的抛物线,在x轴上方的部分,有一动点P(x,y),设∠PON=α.当sinα为何值时,△PON的面积有最大值?
(4)若P点保持(3)中运动路线,是否存在△PON,使得其面积等于△OCN面积的
916
?若存在,求出动点P的位置;若不存在,请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

某电视机生产厂家去年销往农村的某品牌电视机每台的售价y(元)与月份x之间满足函数关系y=-50x+2600,去年的月销售量p(万台)与月份x之间成一次函数关系,其中两个月的销售情况如下表:
月份 1月 5月
销售量 3.9万台 4.3万台
(1)求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2)由于受国际金融危机的影响,今年1,2月份该品牌电视机销往农村的售价都比去年12月份下降了m%,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m的值(保留一位小数).(参考数据:
34
≈5.831,
35
≈5.916,
37
≈6.083,
38
≈6.164)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

为加速森林重庆建设,重庆市委书记薄熙来号召:“动员三千万民众,绿化八百万山川”.是政府决定对树苗育苗基地实行政府补贴,规定每年培育一亩树苗一次性补贴若干元,随着补贴数字的不断增大,某地苗圃每年育苗规模也不断增加,但每年每亩苗圃的收益会相应下降,经调查每年培植亩数y(亩)与政府每亩补贴数额x(元)之间有如下关系(政府补贴为100元的整数倍,且每亩补贴不超过1000元):
x(元) 0 100 200 300 400
y(亩) 600 1000 1400 1800 2200
而每年每亩的收益p(元)与政府每亩补贴数额x(元)之间满足一次函数p=-5x+9000.
(1)请观察题中的表格,用学过的一次函数、反比例函数或二次函数的有关知识求出育苗亩数y(亩)与政府每亩补贴数额x(元)之间的函数关系式;
(2)当2010年政府补贴每亩数额x(元)是多少元时,该地区苗圃的收益w(元)最大,最大收益是多少?
(3)在2010年苗圃取得最大收益的育苗情况下,该地区培植面积刚好达到最大化,要想增收,只能提高每亩收益.经市场调查,培育银杏树苗畅销,每亩的经济效益相应会更好.2011年该地区用去年培育面积的(30-a)%的土地培育银杏树苗,其余面积继续培育一般类树苗,预计今年培育银杏树苗每亩收益在去年培育一般类树苗每亩收益的基础上增加了(100+3a)%,由于培育银杏树苗每亩多支出1000元,2011年该地区因培育银杏类树苗预计比去年增收399万元.请参考以下数据,通过计算,估算出a的整数值.(参考数据:
35
=5.916,
37
=6.082,
39
=6.244)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

9
16
, -0.7070070007…, 
7
+
2
, 
3-9
, -
7
12
, 3.1415926, -
3
2
中,无理数的个数是(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

同步练习册答案