精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,抛物线y=-
12
x2+bx+c与x轴交于A(1,0)、B(5,0)两点.
(1)求抛物线的解析式和顶点C的坐标;
(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和精英家教网CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).
①当α等于多少度时,△CPQ是等腰三角形?
②设BP=t,AQ=s,求s与t之间的函数关系式.
分析:(1)已知抛物线过A,B两点,可将A,B的坐标代入抛物线的解析式中用待定系数法即可求出抛物线的解析式.然后可根据抛物线的解析式得出顶点C的坐标.
(2)①本题要分三种情况进行讨论:
当CQ=CP时,∠PCD=∠QCD=22.5°,因此旋转角α=22.5°;
当CQ=QP时,∠CPQ=∠PCQ=45°,因此P,A重合.旋转角为45°;
当CP=QP时,∠CQP=∠PCQ=45°,因此旋转角α=0°,根据α的取值范围可知此种情况是不成立的.由此可得出旋转角为22.5°或45°时,△CPQ是等腰三角形.
②本题可根据相似三角形来求.分两种情况进行讨论:
当0°<α≤45°时,由于∠A=∠B=45°,∠ACQ和∠BPC都是45°加上一个相同的角,因此△ACQ∽△BPC,即可通过相似三角形得出关于BP,AQ,AC,BC的比例关系式,由于AC,BC的值可通过A,B,C三点的坐标来求出,由此可得出s,t的函数关系式.
当45°<α<90°时,与一的求法完全相同.
解答:解:(1)根据题意,得
-
1
2
+b+c=0
-
25
2
+5b+c=0

解得
b=3
c=-
5
2

∴y=-
1
2
x2+3x-
5
2
=-
1
2
(x-3)2+2,
∴顶点C的坐标为(3,2).

(2)①∵CD=DB=AD=2,CD⊥AB,
∴∠DCB=∠CBD=45度.
若CQ=CP,则∠PCD=
1
2
∠PCQ=22.5度.
∴当α=22.5°时,△CPQ是等腰三角形.
ⅱ)若CQ=PQ,则∠CPQ=∠PCQ=45°,
此时点Q与D重合,点P与A重合.
∴当α=45°时,
△CPQ是等腰三角形.
若PC=PQ,∠PCQ=∠PQC=45°,此时点Q与B重合,点P与D重合.
∴α=0°,不合题意.
∴当α=22.5°或45°时,△CPQ是等腰三角形.精英家教网

②连接AC,∵AD=CD=2,CD⊥AB,
∴∠ACD=∠CAD=45°,AC=BC=
22+22
=2
2

当0°<α≤45°时,
∵∠ACQ=∠ACP+∠PCQ=∠ACP+45度.
∠BPC=∠ACP+∠CAD=∠ACP+45度.
∴∠ACQ=∠BPC.
又∵∠CAQ=∠PBC=45°,
∴△ACQ∽△BPC.
AQ
BC
=
AC
BP

∴AQ•BP=AC•BC=2
2
×2
2
=8
当45°<α<90°时,同理可得AQ•BP=AC•BC=8,
s=
8
t
点评:本题着重考查了待定系数法求二次函数解析式、图形旋转变换、三角形相似、探究等腰三角形的构成情况等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案