【题目】在等腰中,,为边上的高,点在的外部且,,连接交直线于点,连接.
(1)如图①,当时,求证:;
(2)如图②,当时,求的度数;
(3)如图③,当时,求证:.
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)根据等腰三角形三线合一的性质,可得AE垂直平分BC,F为垂直平分线AE上点,即可得出结论;
(2)根据(1)的结论可得AE平分∠BAC,∠BAF=20°,由AB=AC=AD,推出
,根据外角性质可得计算即可;
(3)在CF上截取CM=DF,连接AM,证明△ACM≌△ADF(SAS),进而证得△AFM为等边三角形即可.
(1)证明:∵AE为等腰△ABC底边BC上的高线,AB=AC,
,∠AEB=∠AEC=90°,BE=CE,
∴AE垂直平分BE,F在AE上,
;
(2) ,
,
,
,
由(1)知,AE平分∠BAC,
,
,
故答案为:60°;
(3) 在CF上截取CM=DF,连接AM,
由(1)可知,∠ABC=∠ACB,∠ABE=∠ACE,
,
,
,
,
在△ACM和△ADF中,
∴△ACM≌△ADF(SAS),
,
,
∴△AFM为等边三角形,
,
.
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广,为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写大赛”为了解本次大赛的成绩,校团委随机抽取了其中若干名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩分 | 频数人 | 频率 |
10 | ||
| 30 | |
| 40 | n |
| m | |
| 50 | |
a | 1 |
请根据所给信息,解答下列问题:
______,______,______;
补全频数直方图;
这若干名学生成绩的中位数会落在______分数段;
若成绩在90分以上包括90分的为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中是真命题的是( )
A. 有两边和其中一边的对角对应相等的两个三角形全等
B. 两条平行直线被第三条直线所截,则一组同旁内角的平分线互相垂直
C. 三角形的一个外角等于两个内角的和
D. 等边三角形既是中心对称图形,又是轴对称图形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某农户发展养禽业,准备利用现有的34米长的篱笆靠墙AB(墙长为25米)围成一个面积为120平方米的长方形养鸡场,这个养鸡场的长和宽各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为m的正方形面积为12,则下列关于m的说法中:①m2是有理数;②m的值满足m2﹣12=0;③m满足不等式组;④m是12的算术平方根. 正确有几个( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.
(1)求证:△ABC≌△DEF;
(2)指出图中所有平行的线段,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四点A、B、C、D.
(1)用圆规和无刻度的直尺按下列要求与步骤画出图形:
①画直线AB.
②画射线DC.
③延长线段DA至点E,使.(保留作图痕迹)
④画一点P,使点P既在直线AB上,又在线段CE上.
(2)在(1)中所画图形中,若cm,cm,点F为线段DE的中点,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com