精英家教网 > 初中数学 > 题目详情

如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.

1.(1)求抛物线的解析式;

2.(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;

3.(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

 

【答案】

 

1.解(1)设抛物线的解析式为=2+ +≠0),且过A(﹣2,0),B(﹣3,3),O(0,0)可得

解得

故抛物线的解析式为=2+2

2.(2)①当AE为边时,

∵A、O、D、E为顶点的四边形是平行四边形,

∴DE=AO=2,

则D在轴下方不可能,

∴D在轴上方且DE=2,

则D1(1,3),D2(﹣3,3);

②当AO为对角线时,则DE与AO互相平行,

因为点E在对称轴上,

且线段AO的中点横坐标为﹣1,

由对称性知,符合条件的点D只有一个,与点C重合,即C(﹣1,﹣1)

故符合条件的点D有三个,分别是D1(1,3),D2(﹣3,3),C(﹣1,﹣1)

3.(3)存在,

如上图:∵B(﹣3,3),C(﹣1,﹣1),根据勾股定理得:

BO2=18,CO2=2,BC2=20,

∴BO2+CO2=BC2

∴△BOC是直角三角形.

假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,

设P(),由题意知>0,>0,且=2+2

①若△AMP∽△BOC,则=

 +2=3(2+2

得:1=2=﹣2(舍去).

=时,y=,即P().

②若△PMA∽△BOC,则=

即:2+2=3(+2)

得:1=3,2=﹣2(舍去)

=3时,=15,即P(3,15).

故符合条件的点P有两个,分别是P()或(3,15).

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-精英家教网2x+1经过抛物线上一点B(2,m),且与y轴.直线x=-2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E,
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),
(1)求该抛物线的解析式;
(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;
(3)当m=2时,点Q为平移后的抛物线的一动点,是否存在这样的⊙Q,使得⊙Q与两坐标轴都相切?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上的另一点E,顶点为M(2,4),矩形ABCD的顶点A与O重合,AD,AB分别在x,y轴上,且AD=2,AB=3.
(1)求该抛物线对应的函数解析式;
(2)现将矩形ABCD以每秒1个单位长度的速度从左图所示位置沿x轴的正方向匀速平行移动;同时AB上一动点P也以相同的速度从点A出发向B匀速运动,设它们的运动时间为t秒(0≤t≤3),直线AB与抛物线的交点为N,设多边形PNCD的面积为S,试探究S是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
精英家教网

查看答案和解析>>

同步练习册答案