精英家教网 > 初中数学 > 题目详情
已知二次函数y=-
1
4
x2+
3
2
x
的图象如图.
(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
精英家教网
分析:(1)根据对称轴公式求出x=-
b
2a
,求出即可;
(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;
(3)由抛物线的解析式y=-
1
4
x2+
3
2
x+4
可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.
解答:精英家教网解:(1)由y=-
1
4
x2+
3
2
x

得x=-
b
2a
=-
3
2
2×(-
1
4
)
=3,
∴D(3,0);

(2)方法一:
如图1,设平移后的抛物线的解析式为y=-
1
4
x2+
3
2
x+k

则C(0,k)OC=k,
令y=0即-
1
4
x2+
3
2
x+k=0

x1=3+
4k+9
,x2=3-
4k+9

∴A(3-
4k+9
,0)
,B(3+
4k+9
,0)

AB2=(
4k+9
+3-3+
4k+9
)2=16k+36

AC2+BC2=k2+(3-
4k+9
)2+k2+(3+
4k+9
)2
=2k2+8k+36,
∵AC2+BC2=AB2
即:2k2+8k+36=16k+36,
得k1=4,k2=0(舍去),
∴抛物线的解析式为y=-
1
4
x2+
3
2
x+4


方法二:
y=-
1
4
x2+
3
2
x
,∴顶点坐标(3,
9
4
)

设抛物线向上平移h个单位,则得到C(0,h),顶点坐标M(3,
9
4
+h)

∴平移后的抛物线:y=-
1
4
(x-3)2+
9
4
+h

当y=0时,-
1
4
(x-3)2+
9
4
+h=0
,得x1=3-
4h+9
,x2=3+
4h+9

∴A(3-
4h+9
,0)
,B(3+
4h+9
,0)

∵∠ACB=90°,
∴△AOC∽△COB,则OC2=OA•OB(6分),
h2=(
4h+9
-3)(
4h+9
+3)

解得h1=4,h2=0(不合题意舍去),
∴平移后的抛物线:y=-
1
4
(x-3)2+
9
4
+4=-
1
4
(x-3)2+
25
4


(3)方法一:
如图2,由抛物线的解析式y=-
1
4
x2+
3
2
x+4
可得,
A(-2,0),B(8,0),C(0,4),M(3,
25
4
)
精英家教网
过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,
DM2=(
25
4
)2=
625
16

CM2=MH2+CH2=32+(
25
4
-4)2=
225
16

在Rt△COD中,CD=
32+42
=5
=AD,
∴点C在⊙D上,
DM2=(
25
4
)2=
625
16
CD2+CM2=52+
225
16
=(
25
4
)2=
625
16

∴DM2=CM2+CD2
∴△CDM是直角三角形,∴CD⊥CM,
∴直线CM与⊙D相切.

方法二:
如图3,由抛物线的解析式可得A(-2,0),B(8,0),C(0,4),M(3,
25
4
)

作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,DM=
25
4
,由勾股定理得CM=
15
4
精英家教网
∵DM∥OC,
∴∠MCH=∠EMD,
∴Rt△CMH∽Rt△DME,
DE
MH
=
MD
CM
得DE=5,
由(2)知AB=10,∴⊙D的半径为5.
∴直线CM与⊙D相切.
点评:此题主要考查了二次函数的综合应用以及勾股定理以及逆定理的应用,利用数形结合得出是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根;⑤2a+b=0.其中,正确的说法有
②④⑤
②④⑤
.(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,已知A点坐标为(-1,0),且对称轴为直线x=2,则B点坐标为
(5,0)
(5,0)

查看答案和解析>>

同步练习册答案