精英家教网 > 初中数学 > 题目详情
(2012•乌鲁木齐)等腰△ABC内接于半径为5的⊙O,点O到底边BC的距离为3,则AB的长为
2
5
或4
5
2
5
或4
5
分析:分两种情况考虑:当三角形ABC为锐角三角形时,如图1所示,过A作AD垂直于BC,根据题意得到AD过圆心O,连接OB,在直角三角形OBD中,由OB与OD长,利用勾股定理求出BD的长,在直角三角形ABD中,利用勾股定理即可求出AB的长;当三角形ABC为钝角三角形时,同理求出AB的长,综上即可得到所有满足题意AB的长.
解答:解:分两种情况考虑:当△ABC为锐角三角形时,如图1所示,
过A作AD⊥BC,由题意得到AD过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO+OD=8,BD=4,
根据勾股定理得:AB=
82+42
=4
5

当△ABC为锐角三角形时,如图2所示,
过A作AD⊥BC,由题意得到AD延长线过圆心O,连接OB,
∵OD=3,OB=5,
∴在Rt△OBD中,根据勾股定理得:BD=4,
在Rt△ABD中,AD=AO-OD=2,BD=4,
根据勾股定理得:AB=
22+42
=2
5

综上,AB=2
5
或4
5

故答案为:2
5
或4
5
点评:此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•乌鲁木齐)如图是某几何体的三视图,其侧面积是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乌鲁木齐)图(1)是边长为(a+b)的正方形,将图(1)中的阴影部分拼成图(2)的形状,由此能验证的式子是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乌鲁木齐)函数y=x2+mx-4,当x<2时,y随x的增大而减小,则m的取值范围是
m≤-4
m≤-4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乌鲁木齐)王老师将本班的“校园安全知识竞赛”成绩(成绩用s表示,满分为100分)分为5组,第1组:50≤x<60,第2组:60≤x<70,…,第5组:90≤x<100.并绘制了如图所示的频率分布表和频数分布直方图(不完整).
(1)请补全频率分布表和频数分布直方图;
(2)王老师从第1组和第5组的学生中,随机抽取两名学生进行谈话,求第1组至少有一名学生被抽到的概率;
(3)设从第1组和第5组中随机抽到的两名学生的成绩分别为m、n,求事件“|m-n|≤10”的概率.
分组编号 成绩 频数 频率
第1组 50≤s<60 0.04 
第2组 60≤s<70 8 0.16
第3组 70≤s<80 0.4 
第4组 80≤s<90 17 0.34
第5组 90≤s≤100 3 0.06
合计    1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•乌鲁木齐)如图是一个抛物线形拱桥的示意图,桥的跨度AB为100米,支撑桥的是一些等距的立柱,相邻立柱的水平距离为10米(不考虑立柱的粗细),其中距A点10米处的立柱FE的高度为3.6米.
(1)求正中间的立柱OC的高度;
(2)是否存在一根立柱,其高度恰好是OC的一半?请说明理由.

查看答案和解析>>

同步练习册答案