在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB,垂足为点D,则cosA=,即AD=bcosA,所以BD=c-AD=c-bcosA. 在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2, 整理得a2=b2+c2-2bccosA. ① 同理可得b2=a2+c2-2accosB. ② C2=a2+b2-2abcosC. ③ 这个结论就是著名的余弦定理.在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素. (1)在锐角△ABC中,已知∠A=60°,b=5,c=7,试利用①,②,③求出a,∠B,∠C,的数值; (2)已知在锐角△ABC中,三边a,b,c分别是7,8,9,求出∠A,∠B,∠C的度数.(保留整数)