精英家教网 > 初中数学 > 题目详情
精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
1
x
的图象相交于A、C两点,过A作x轴的垂线,交x轴于点B,连接BC.若△ABC的面积为S,则(  )
A、S=1B、S=2
C、S=3D、S的值不能确定
分析:根据正比例函数y=kx(k>0)与反比例函数y=
1
x
的图象均关于原点对称,可求出A、C两点坐标的关系,设出两点坐标再根据三角形的面积公式即可解答.
解答:解:∵正比例函数y=kx(k>0)与反比例函数y=
1
x
的图象均关于原点对称,
∴设A点坐标为(x,
1
x
),则C点坐标为(-x,-
1
x
),
∴S△AOB=
1
2
OB•AB=
1
2
x•
1
x
=
1
2

S△BOC=
1
2
OB•|-
1
x
|=
1
2
|-x|•|-
1
x
|=
1
2

∴S△ABC=S△AOB+S△BOC=
1
2
+
1
2
=1.
故选A.
点评:本题考查的是反比例函数与正比例函数图象的特点,解答此题的关键是找出A、C两点坐标的关系,设出两点坐标即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=
1
2
x
的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数在第一象限图象上的点,且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.(只需在图中作出点B,P,保留痕迹,不必写出理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正比例函数y=kx(k>0)与反比例函数y=
5x
的图象相交于A、C两点,过A作x轴的垂线交x轴于B,连接BC,则△ABC的面积S=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正比例函数y=
1
2
x的图象与反比例函数y=
k
x
(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△AOM的面积为1,点B(-1,t)为反比例函数在第三象限图象上的点.
(1)求反比例函数的解析式;
(2)试求出点A、点B的坐标;
(3)在y轴上求一点P,使|PA-PB|的值最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,正比例函数y=k1x的图象与反比例函数y=
k2x
的图象相交于点A、B,点A 在第一象限,且点A 的横坐标为1,作AH垂直于x轴,垂足为点H,S△AOH=1.
(1)求AH的长;
(2)求这两个函数的解析式;
(3)如果△OAC是以OA为腰的等腰三角形,且点C在x轴上,求点C的坐标.

查看答案和解析>>

同步练习册答案