【题目】如图,在Rt△ABC中,以BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OM,OC=1.
(1)求证:AM=MD;
(2)填空:
①若DN,则△ABC的面积为 ;
②当四边形COMD为平行四边形时,∠C的度数为 .
【答案】(1)详见解析;(2)①;②45°.
【解析】
(1)连接OD,根据切线的性质得到∠ODM=∠ABC=90°,根据全等三角形的判定定理得到Rt△BOM≌Rt△DOM(HL),求得BM=DM,∠DOM=∠BOM=∠DOB,根据圆周角定理得到∠BOM=∠C,于是得到结论;
(2)①由于tan∠DON=,求得∠DON=60°,根据圆周角定理得到,根据三角形的面积公式即可得到结论;
②根据平行四边形的性质和圆周角定理即可得到结论.
(1)证明:连接OD,
∵DN为⊙O的切线,
∴∠ODM=∠ABC=90°,
在Rt△BOM与Rt△DOM中,
∴Rt△BOM≌Rt△DOM(HL),
∴BM=DM,∠DOM=∠BOM,
∵∠C,
∴∠BOM=∠C,
∴OM∥AC,
∵BO=OC,
∴BM=AM,
∴AM=DM;
(2)解:①∵OD=OC=1,DN,
∴tan∠DON,
∴∠DON=60°,
∴∠C=30°,
∵BC=2OC=2,
∴ABBC,
∴△ABC的面积为ABBC2;
②当四边形COMD为平行四边形时,∠C的度数为45°,
理由:∵四边形COMD为平行四边形,
∴DN∥BC,
∴∠DON=∠NDO=90°,
∴∠CDON=45°.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于、两点(点在点的左侧),与轴交于点,顶点为.
(1)请求出、两点的坐标;
(2)将抛物线绕平面内的某一点旋转180°,旋转后得到抛物线,抛物线的顶点为,与轴相交于、两点(点在点的右侧),使得抛物线过点,且以点、、、为顶点的四边形为平行四边形,请求出所有满足条件的抛物线的顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )
A. y=3x2 B. y=4x2 C. y=8x2 D. y=9x2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.
(1)求直线AD及抛物线的解析式;
(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?
(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点在上.以点为圆心,为半径画弧,交于点(点与点不重合),连接;再以点为圆心,为半径画弧,交于点(点与点不重合),连接;再以点为圆心,为半径画弧,交于点(点与点不重合),连接;……按照上面的要求一直画下去,得到点,若之后就不能再画出符合要求点了,则________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知和均为的等边三角形,点为的中点,过点与平行的直线交射线于点.
(1)当,,三点在同一直线上时(如图1),求证:为中点;
(2)将图1中的绕点旋转,当,,三点在同一直线上时(如图2),求证:为等边三角形;
(3)将图2中绕点继续顺时针旋转多少度时,点恰好第一次位于线段中点,试作出图形并直接写出绕点继续旋转的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若点M是轴正半轴上任意一点,过点M作PQ∥轴,分别交函数和的图象于点P和Q,连接OP和OQ.则下列结论正确的是( )
A.∠POQ不可能等于90°B.
C.这两个函数的图象一定关于轴对称D.△POQ的面积是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com