精英家教网 > 初中数学 > 题目详情
7.已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如图1,当DE∥BC时,有DB=EC.(填“>”,“<”或“=”)
(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.
(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.

分析 (1)由DE∥BC,得到$\frac{DB}{AB}=\frac{EC}{AC}$,结合AB=AC,得到DB=EC;
(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;
(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,在简单计算即可.

解答 解:(1)∵DE∥BC,
∴$\frac{DB}{AB}=\frac{EC}{AC}$,
∵AB=AC,
∴DB=EC,
故答案为:=,
(2)成立.
证明:由①易知AD=AE,
∴由旋转性质可知∠DAB=∠EAC,
在△DAB和△EAC中
得$\left\{\begin{array}{l}AD=AE\\∠DAB=∠EAC\\ AB=AC\end{array}\right.$
∴△DAB≌△EAC,
∴DB=CE,
(3)如图,

将△CPB绕点C旋转90°得△CEA,连接PE,
∴△CPB≌△CEA,
∴CE=CP=2,AE=BP=1,∠PCE=90°,
∴∠CEP=∠CPE=45°,
在Rt△PCE中,由勾股定理可得,PE=2$\sqrt{2}$,
在△PEA中,PE2=(2$\sqrt{2}$)2=8,AE2=12=1,PA2=32=9,
∵PE2+AE2=AP2
∴△PEA是直角三角形
∴∠PEA=90°,
∴∠CEA=135°,
又∵△CPB≌△CEA
∴∠BPC=∠CEA=135°.

点评 此题是几何变换综合题,主要考查了旋转的性质,平行线的性质,全等三角形的性质和判定,勾股定理及其逆定理,解本题的关键是构造全等三角形,也是本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.6÷(-3)的值是(  )
A.-2B.2C.3D.-18

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简或计算:
(1)$\frac{1}{a-1}-\frac{a}{a-1}$;                   
(2)$\sqrt{18}-\sqrt{8}+\sqrt{48}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径长为2cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2)且tan∠ABC=$\frac{1}{2}$;
(1)求抛物线的解析式;
(2)判断△ACD的形状,并说明理由;
(3)在第一象限的抛物线上是否存在一点P,使△BCP的面积最大,如存在,求出P点坐标和最大面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.一次函数y=kx+(k-1)的图象经过第一、三、四象限,则k的取值范围是0<k<1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程:
(1)$\frac{4+x}{x-1}-5=\frac{2x}{x-1}$.
(2)$\frac{1}{x-3}+2=\frac{x-4}{3-x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=$\frac{4}{3}$,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.
(1)求点B的坐标.
(2)当OG=4时,求AG的长.
(3)求证:GA平分∠OGE.
(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.

(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;
②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.

查看答案和解析>>

同步练习册答案