精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC中BC边上的高,且∠B=30°,∠C=45°,CD=2.求BC的长.
分析:先在Rt△ACD中,运用正切函数的定义得出AD=CD=2,然后在Rt△ABD中,运用正切函数的定义得出BD=2
3
,则根据BC=BD+CD即可求解.
解答:解:∵AD是△ABC中BC边上的高,
∴AD⊥BC,
∴∠ADB=∠ADC=90.
在Rt△ACD中,
∵tanC=
AD
CD
=
AD
2
=tan45°=1,
∴AD=2.
在Rt△ABD中,
∵tanB=
AD
BD
=
2
BD
=tan30°=
3
3

∴BD=2
3

∴BC=BD+CD=2
3
+2,
即BC的长为2
3
+2.
点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案