【题目】如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.
(1)求直线AB的解析式;
(2)求y与x的函数关系式;
(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;
(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.
【答案】(1)y=;(2)y=;(3)6;(4)点D不在直线AB上.
【解析】
(1)设直线AB的解析式为y=kx+b,用待定系数法即可求解;
(2)根据S△OMP=,即可求解;
(3)根据面积之间关系列出等式即可求解;
(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,先求出D点坐标,看是否在直线y=上即可判断.
(1)设直线AB的解析式为y=kx+b,
A点坐标为(24,0),B为(0,12),
把A、B两点的坐标代入上式,得:,
解得,
∴y=;
(2)∵S△OMP=,
∴y=,即y=;
(3)∵S△AOB=,
∴S△AOB=18,即y=18,
当=18时,解得:x=6;
(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,
当x=﹣=6时,S△POM=y有最大值.
此时OP=6,OM=12﹣x=6
∴△OMP是等腰直角三角形.
∵将△POM沿PM所在直线翻折后得到△POM.
∴四边形OPDM是正方形
∴D(6,6),
把D(6,6)代入y=
x=6时,y=﹣×6+12=9≠6
∴点D不在直线AB上.
科目:初中数学 来源: 题型:
【题目】甲、乙两小朋友都从地出发,匀速步行到地(、两地之间为笔直的道路)甲出发半分钟后,乙才从地出发,经过一段时间追上甲,两人继续向地步行,当甲、乙之间的距离刚好是70米时,乙立刻掉头以原速度向地步行,半分钟后与甲相遇,乙又立刻掉头向地以原速度步行(两次掉头时间忽略不计).甲、乙相距的路程为(米)与乙出发的时(分钟)之间的关系如图所示,当乙到达地时,甲与地相距的路程是__________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB∥CD,AD∥BC, AB=3,BC=4,将矩形纸片沿BD折叠,使点A落在点E处,设DE与BC相交于点F.
(1)判断△BDF的形状,并说明理由;
(2)求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的是( )
A.关于某直线对称的两个三角形是全等三角形B.全等三角形是关于某直线对称的
C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.有一条公共边的两个全等三角形关于公共边所在的直线对称
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)
(1)求抛物线的函数解析式;
(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段 BD、CE交于点M.
(1)如图1,若AB=AC,AD=AE
①问线段BD与CE有怎样的数量关系?并说明理由;
②求∠BMC的大小(用α表示);
(2)如图2,若AB= BC=kAC,AD =ED=kAE则线段BD与CE的数量关系为 ,∠BMC= (用α表示);
(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺
规作图,不写作法,保留作图痕迹),连接 EC并延长交BD于点M.则∠BMC= (用α表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程,下列说法正确的是( )
A. 当k=0时,方程没有实数根 B. 当k=1时,方程有一个实数根
C. 当k=-1时,方程有两个相等的实数根 D. 当k≠0时,方程总有两个不相等的实数根
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com