精英家教网 > 初中数学 > 题目详情
如图,以△ABC的边AB为直径的⊙O交AC于点D,弦DE∥AB,∠C=∠BAF
(1)求证:BC为⊙O的切线;
(2)若⊙O的半径为5,AD=2
5
,求DE的长.
分析:(1)连接BD.欲证BC为⊙O的切线,只需证明∠ABC=90°即可;
(2)过D作DM⊥AB,在Rt△ADB中利用勾股定理即可求得DB的长,然后根据三角形的面积公式即可求得DM的长,即DE的弦心距,则DE=AB-2AM,据此即可求解.
解答:(1)证明:连BD,则∠CDB=90°
∠C=∠BAF=∠BDE
∵DE∥AB
∴∠ABD=∠BDE=∠C
∴∠ABC=∠ABD+∠DBC=∠C+∠DBC=90°
∴BC为⊙O的切线;

(2)解:过D作DM⊥AB,
∵AB=10,AD=2
5

∴在Rt△ADB中,DB=
AB2-DA2
=
102-(2
5
)2
=4
5

又∵S△ADB=
1
2
AD•DB=
1
2
AB•DM,
∴DM=4,
在Rt△ADM中,AM=
AD2-DM2
=
(2
5
)2-42
=2 
∴DE=AB-2AM=10-2×2=6.
点评:本题考查切线的判定以及勾股定理,已知所证的直线经过圆上的点,证切线常用的方法是转化成证垂直.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC满足什么条件时,四边形ADFE是矩形;
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以△ABC的边AB为直径作⊙O,交BC于D点,交AC于E点,BD=DE
(1)求证:△ABC是等腰三角形;
(2)若E是AC的中点,求
BD
的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•峨眉山市二模)如图,以△ABC的边AB为直径作⊙O,BC与⊙O交于D,D是BC的中点,过D作DE⊥AC,交AC于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,BD=8,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•黔东南州)如图,以△ABC的边BC为直径作⊙O分别交AB,AC于点F.点E,AD⊥BC于D,AD交于⊙O于M,交BE于H.
求证:DM2=DH•DA.

查看答案和解析>>

同步练习册答案