精英家教网 > 初中数学 > 题目详情
已知:如图所示,A、K为圆O上的两点,直线FN⊥MA,垂足为N,FN与圆O相切于点F,∠AOK=2∠MAK.
(1)求证:MN是圆O的切线;
(2)若点B为圆O上一动点,BO的延长线交圆O于点C,交NF于点D,连接AC并延长交NF于点E.当精英家教网FD=2ED时,求∠AEN的余切值.
分析:(1)要证MN是圆O的切线,只要证得∠OAM=90°即可;
(2)要求它的余切值,需要求得EN:AN的值,根据切割线定理和已知条件找到线段之间的关系,从而根据锐角三角函数的概念求解.
解答:精英家教网(1)证明:∵OA=OK,
∴∠3=∠AKO.
∵∠2+∠3+∠AKO=180°,∠AOK=2∠MAK,
∴∠MAK+∠OAK=90°;
∴MN是圆O的切线.

(2)解:∵MN是圆O的切线,
∴∠1=∠B,
∴∠4=∠2.
又∵∠2=∠3,
∴∠4=∠3,
∴DC=DE.
∵NF切圆O于F,
∴∠OFN=90°,
又∵∠NAO=90°,
∴四边形AOFN是矩形.
∵OA=OF,
∴矩形AOFN是正方形,
∴AN=NF=OF.
∵NF切圆O于F,
∴FD2=DC•DB.
∵FD=2ED,
设ED=x,则CD=ED=x,
∴(2x)2=x(x+2r),
解得x=
2
3
r.
在△AEN中,∠ANE=90°,
cot∠AEN=
NE
AN
=
NF+FE
AN
=
3r
r

cot∠AEN=
NE
AN
=
NE+FE
AN
=
3r
r
=3,
同理:x=
2
3
r.
在△AEN中,∠ANE=90°.
cot∠AEN=
NE
AN
=
NE+FE
AN
=
1
3
r
r
=
1
3

∴∠AEN的余切值为3或
1
3
点评:此题综合运用了切线的判定和性质、切割线定理以及锐角三角函数的概念.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图所示,Rt△ABC的周长为4+2
3
,斜边AB的长为2
3
,则Rt△ABC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图所示,四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于点E,AC与CE相等吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,正比例函数y=ax的图象与反比例函数y=
kx
的图象交于点A(3,2).
(1)试确定上述正比例函数和反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,求M点坐标.

查看答案和解析>>

同步练习册答案