精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).
(1)求二次方程y=ax2+bx+c的解析式;
(2)在抛物线对称轴上是否存在一点P,使点P到B,C两点距离之差最大?若存在,求出P点的坐标;若不存在,请说明理由.
分析:(1)将B、C的坐标代入抛物线的解析式中,联立抛物线的对称轴方程,即可求得该抛物线的解析式.
(2)由于A、B关于抛物线的对称轴对称,若P到B、C的距离差最大,那么P点必为直线AC与抛物线对称轴的交点,可先求出直线AC的解析式,联立抛物线对称轴方程,即可得到点P的坐标.
解答:解:(1)将C(0,-3)代入y=ax2+bx+c中,得到c=-3.(1分)
将c=-3,B(3,0)代入y=ax2+bx+c中,
得,9a+3b-3=0,
∴3a+b-1=0①(2分)
∵x=1是对称轴,
-
b
2a
=1
,(3分)
∵b=-2a,②
将②代入①的a=1,
∴b=-2,
∴二次函数的解析式是y=x2-2x-3.(4分)

(2)∵P在抛物线的对称轴上,又A、B是关于抛物线的对称轴对称,
∴PB=PA,即:|PB-PC|=|PA-PC|,
(根据对称性,求P到B和C的距离之差就是求P到A和C的距离之差)
∴P、C、A三点共线的时候这个差最大.(6分)
∵C点的坐标是(0,-3),A点的坐标是(-1,0),
∴直线AC的解析式是y=-3x-3;
又因为对称轴为x=1,
所以点P坐标是(1,-6).(8分)
点评:此题主要考查了二次函数解析式的确定、轴对称的性质等重要知识点,难度适中;(2)题中能够正确的判断出点P的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河源二模)已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区一模)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示,抛物线对应的函数解析表达式只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示的抛物线是把y=-x2经过平移而得到的.这时抛物线过原点O和x轴正向上一点A,顶点为P;
①当∠OPA=90°时,求抛物线的顶点P的坐标及解析表达式;
②求如图所示的抛物线对应的二次函数在-
1
2
≤x≤
1
2
时的最大值和最小值.

查看答案和解析>>

同步练习册答案