精英家教网 > 初中数学 > 题目详情
如图,已知平面直角坐标系中三个点A(-8,0)、B(2,0)、C,O为坐标原点.以AB为直径的⊙M与y轴的负半轴交于点D.
(1)求直线CD的解析式;
(2)求证:直线CD是⊙M的切线;
(3)过点A作AE⊥CD,垂足为E,且AE与⊙M相交于点F,求一个一元二次方程,使它的两个根分别是AE和AF.

【答案】分析:(1)已知A、B的坐标就可以求出直径AB的长,弦心距MB的长,根据垂径定理就可以求出BD的长,即得到D的坐标.根据待定系数法就可以求出CD的解析式.
(2)连接MD,根据M,C,D的坐标就可以得△CDM的三边的长,根据勾股定理的逆定理证明三角形是直角三角形.
(3)易证△CDM∽△CEA,根据相似三角形的对应边的比相等,可以求出AE,再证明Rt△CDM∽Rt△BFA,就可以得到AF,则所求的一元二次方程就可以得到.
解答:(1)解:∵A(-8,0),B(2,0),
∴⊙M的圆心为(-3,0),且⊙M的半径为5.
连接MD.
在Rt△OMD中,
OD==4,
∴D(0,-4).  (2分)
设所求直线CD的解析式为y=kx+b,则由C(,0)、D(0,-4)两点,

解得
故所求直线CD的解析式为y=x-4. (4分)

(2)证明:在Rt△CDO中,CD2=OD2+OC2=42+(2=
在△CDM中,MC=3+,DM=5,
∴DM2+CD2=25+

∴MD2+CD2=MC2
∴△CDM是直角三角形,且
∠MDC=90°,CD经过半径MD的外端点D,
∴直线CD是⊙M的切线.  (6分)

(3)解:由已知,AE⊥CD,由(2),MD⊥CD,
∴MD∥AE,
∴△CDM∽△CEA.
,即,解得AE=8.(7分)
连接BF.则∠AFB=90°.
又∠MDC=90°,∠CMD=∠CAE,
∴Rt△CDM∽Rt△BFA.
,即,解得AF=6.
故所求的一个一元二次方程是x2-14x+48=0.(9分)
点评:本题主要考查了待定系数法求函数解析式,以及相似三角形的性质,相似三角形的对应边的比相等.
练习册系列答案
相关习题

科目:初中数学 来源:2012年初中毕业升学考试(四川巴中卷)数学(解析版) 题型:解答题

如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,

与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐

标为2,

(1)求一次函数和反比例函数的解析式;

(2)直接写出时x的取值范围。

 

查看答案和解析>>

科目:初中数学 来源:2013届安徽滁州八年级下期末模拟数学试卷(沪科版)(解析版) 题型:解答题

已知:如图1,平面直角坐标系中,四边形OABC是矩形,点A,C的坐

标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-交折线O-A-B于点E.

(1)在点D运动的过程中,若△ODE的面积为S,求S与的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形O′A′B′C′,C′B′分别交CB,OA于点D,M,O′A′分别交CB,OA于点N,E.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

    

 

查看答案和解析>>

同步练习册答案