分析 (1)由偶次方和算术平方根的非负性质求出a和b的值,得出点A、B的坐标,再求出OC,即可得出点C的坐标;
(2)作EG⊥x轴于G,FH⊥x轴于H,由三角形的面积关系得出DF=DE,由AAS证明△FDH≌△EDG,得出DH=DG,即可得出结果;
(3)作MQ⊥x轴于Q,连接CM、AG、M,证出△MCQ是等腰直角三角形,得出∠MCQ=45°,同理:△MPQ是等腰直角三角形,∠MAQ=45°,△AHG是等腰直角三角形,得出∠AGH=45°=∠MCQ,证出A、G、M、C四点共圆,由圆周角定理即可得出结论.
解答 解:(1)∵(a-b)2+$\sqrt{b-6}$=0,
∴a-b=0,b-6=0,
∴a=b=6,
∴A(6,0),B(0,6),
∴OA=OB=6,
∵OC:OA=1:3.
∴OC=2,
∴C(-2,0);
(2)作EG⊥x轴于G,FH⊥x轴于H,如图1所示:
则∠FHD=∠EGD=90°,
∵BD平分△BEF的面积,
∴DF=DE,
在△FDH和△EDG中,$\left\{\begin{array}{l}{∠FHD=∠EGD}&{\;}\\{∠FDH=∠EDG}&{\;}\\{DF=DE}&{\;}\end{array}\right.$,
∴△FDH≌△EDG(AAS),
∴DH=DG,即-xE+1=xF,-1,
∴xE+xF=2;
(3)∠CGM的度数不改变,∠CGM=45°;
理由如下:作MQ⊥x轴于Q,连接CM、AG、M,如图2所示:
则MQ=4,OQ=2,
∴CQ=2+2=4,
∴△MCQ是等腰直角三角形,
∴∠MCQ=45°,∵
同理:△MQA是等腰直角三角形,
∴∠MAQ=45°,
∵AH⊥PM,HG=HA,
∴△AHG是等腰直角三角形,
∴∠AGH=45°=∠MCQ,
∴A、G、M、C四点共圆,
∴∠CGM=∠MAQ=45°.
点评 本题是三角形综合题目,考查了偶次方和算术平方根的非负性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握全等三角形的判定与性质、证明三角形是等腰直角三角形和四点共圆是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 7 | B. | 16 | C. | 21 | D. | 28 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com