精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,E是四边形ABCD的边AD上一点,且△ABC和△CDE都是等边三角形.
求证:BE=AD.
分析:根据△ABC和△CDE都是等边三角形,得AC=BC,CD=CE,∠ACB=∠DCE,则∠BCE=∠ACD,可证明△BCE≌△ACD,则BE=AD.
解答:证明:∵△ABC和△CDE都是等边三角形,
∴BC=AC,CE=CD,∠ACB=∠ECD=60°.(2分)
∴∠ACB+∠ACE=∠ECD+∠ACE.即得∠BCE=∠ACD.(1分)
在△BCE和△ACD中,
BC=AC
∠BCE=∠ACD
CE=CD

∴△BCE≌△ACD(SAS),(2分)
∴BE=AD.(1分)
点评:本题考查了全等三角形的判定和性质以及等边三角形的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•西城区一模)已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=
20
20

(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,
从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是
20≤m<28
20≤m<28

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在一块长80cm,宽60cm的白铁片的四个角上截去四个相同的小正方形,然后把四边折起来,做成底面积是1500cm2的没有盖的长方体盒子.问截去的小正方形边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京市西城区九年级一模数学卷(带解析) 题型:解答题

已知:如图1,矩形ABCD中,AB=6,BC=8,EFGH分别是ABBCCDDA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.

(1)如图2,当EFGH分别是ABBCCDDA四边中点时,m________
(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,从而找到解决问题的途径,求得m的取值范围.
①请在图1中补全小贝同学翻折后的图形;
m的取值范围是____________

查看答案和解析>>

科目:初中数学 来源:2012届山东省东营济军生产基地实验学校九年级上学期阶段检测数学卷(带解析) 题型:解答题

已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

同步练习册答案