精英家教网 > 初中数学 > 题目详情
一不透明口袋中装有3个红球、2个白球、1个黄球,每个球除颜色外其他均相同.从这个口袋中同时摸出两个球,发生概率最小的事件是摸到(  )
分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都是红球、一个红球,一个白球、都是白球、一个白球,一个黄球的情况,继而求得答案.
解答:解:列表得:
红黄 红黄 红黄 白黄 白黄  
红白 红白 红白 白白   黄白
红白 红白 红白   白白 黄白
红红 红红   白红 白红 黄红
红红   红红 白红 白红 黄红
  红红 红红 白红 白红 黄红
 
∵有30种等可能的结果,都是红球6种情况;一个红球,一个白球的有14种情况;都是白球的有2种情况;一个白球,一个黄球有4种情况,
∴发生概率最小的事件是摸到:都是白球.
故选C.
点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

17、实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?
建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:
在不透明的口袋中装有红,黄,白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?
为了找到解决问题的办法,我们可把上述问题简单化:
(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?
假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);
(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?
我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)
(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?
我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):…
(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?
我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红,黄,白,蓝,绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是
6

(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是
46

(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是
1+5(n-1)

模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:
(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是
1+m

(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是
1+m(n-1)

问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;
(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.
(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;
(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

某班要从演讲水平相当的甲、乙两人中选派一人参加学校的演讲大赛,为了公平,班委会设计了一个方法,其规则如下:在一个不透明的袋子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由甲从中随机摸出一个小球,记下小球上的数字;在另一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由乙从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选甲去;若两个数字的和为偶数,则选乙去.
(1)请用树状图或列表的方法求甲被选去参加演讲大赛的概率;
(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

一只不透明口袋中装有2只黄球、5只红球、3只白球,这些球除了颜色以外都相同,从袋中任意摸出一球,摸到的球可能性最大的是
红球
红球

查看答案和解析>>

同步练习册答案