分析 过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.
解答 解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,
设OC=2x,则BD=x,
在Rt△OCE中,∠COE=60°,
则OE=x,CE=$\sqrt{3}$x,
则点C坐标为(x,$\sqrt{3}$x),
在Rt△BDF中,BD=x,∠DBF=60°,
则BF=$\frac{1}{2}$x,DF=$\frac{\sqrt{3}}{2}$x,
则点D的坐标为(5-$\frac{1}{2}$x,$\frac{\sqrt{3}}{2}$x),
将点C的坐标代入反比例函数解析式可得:k=$\sqrt{3}$x2,
将点D的坐标代入反比例函数解析式可得:k=$\frac{5\sqrt{3}}{2}$x-$\frac{\sqrt{3}}{4}$x2,
则$\sqrt{3}$x2=$\frac{5\sqrt{3}}{2}$x-$\frac{\sqrt{3}}{4}$x2,
解得:x1=2,x2=0(舍去),
故k=$\sqrt{3}$x2=$\sqrt{3}$×4=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.
点评 本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | S△ABC>S△DEF | B. | S△ABC<S△DEF | C. | S△ABC=S△DEF | D. | 不能确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com