精英家教网 > 初中数学 > 题目详情
5.①${(\frac{1}{2})^{-1}}-\sqrt{{{(-3)}^2}}+(π-3.14){\;}^0-\sqrt{2}cos45$°
②解方程:$\frac{x}{x-2}+\frac{4}{2-x}=-1$.

分析 ①原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;
②分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:①原式=2-3+1-1=-1;
②去分母得:x-4=-x+2,
移项合并得:2x=6,
解得:x=3,
检验:当x=3时,x-2=1≠0,
则x=3是原方程的解.

点评 此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.如图是由5个相同的正方体组成的一个立体图形,它的左视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知圆锥的底面直径为4cm,其母线长为10cm,沿着它的一条母线剪开后得到的扇形的圆心角的度数为72°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,正方形ABCD顶点D(-3,2),B(1,0),CD∥x轴,将正方形ABCD向右平移m个单位,得正方形A′B′C′D′.当 m=4时,反比例函数y=$\frac{k}{x}$(x>0)的图象过线段C′D′的中点E,与线段B′C′交于点F.
(1)求反比例函数y=$\frac{k}{x}$(k>0)的解析式.
(2)平移过程中,若反比例函数y=$\frac{k}{x}$(x>0)的图象分别与线段C′D′、B′C′同时有交点.直接写出m的取值范围3≤m≤5;其中,当m=4时,点D′的坐标为(1,2).
(3)反比例函数y=$\frac{k}{x}$(x>0)上是否存在点P,使得△EFP的面积等于△EFC′的面积?若存在求出点P的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若AB=5,AC=6,求AE,BF之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解方程:$\frac{2}{x+3}$$+\frac{6}{{{x^2}-{9_{\;}}}}$=$\frac{1}{x-3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,平行四边形ABCD中,D点在抛物线y=$\frac{1}{8}$x2+bx+c上,且OB=OC,AB=5,tan∠ACB=$\frac{3}{4}$,M是抛物线与y轴的交点.
(1)求直线AC和抛物线的解析式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?
(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列几何图形中,既是轴对称图形又是中心对称图形的是(  )
A.等腰三角形B.等边三角形C.菱形D.正五边形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图所示,DH⊥AB于H,AC⊥BD于C,DH与AC相交于点E,仔细观察图形,回答以下问题:
(1)图中有几个直角三角形?
(2)∠AEH和∠B是什么关系?为什么?
(3)若∠B=70°,∠A和∠CED各是多少度?

查看答案和解析>>

同步练习册答案