精英家教网 > 初中数学 > 题目详情
如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有    个.
【答案】分析:连接DM,根据已知分析可得满足等腰三角形的多种情况:PM=CM或CP=CM或CM=PM,然后根据勾股定理进行分析计算.
解答:解:连接DM
根据已知,得AD∥BM,AD=BM=6,则四边形ABDM是平行四边形.又∠ABC=90°,则四边形ABDM是矩形.所以∠DMC=90°,根据勾股定理,得CD=10.
①作CM的垂直平分线交CD于P,则三角形PMC是等腰三角形,此时CP=5;
②当CP=CM=8时,三角形PMC是等腰三角形;
③当点P在AD上,DP=2时,CM=PM;
④当点P在AB上,BP=2时,CM=PM;
故有四个.
点评:此题主要考查学生对梯形的性质及等腰梯形的判定的理解及运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
(2)若E、F分别是AB、DC的中点,连接EF,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.则腰长是
 
.若P是梯形的对称轴L上的点,那么使△PDB为等腰三角形的点有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在梯形ABCD中,AB∥DC,EF是梯形的中位线,AC交EF于G,BD交EF于H,以下说法错误的是(  )

查看答案和解析>>

同步练习册答案