精英家教网 > 初中数学 > 题目详情
8、如图,直线AB、CD、EF两两相交,则图中为同旁内角的角共有(  )对.
分析:截线AB、CD与被截线EF所截,可以得到两对同旁内角,同理AB、EF被CD所截,CD、EF被AB所截,又可以分别得到两对.
解答:解:根据同旁内角的定义,直线AB、CD被直线EF所截可以得到两对同旁内角,
同理:直线AB、EF被直线CD所截,可以得到两对,
直线CD、EF被直线AB所截,可以得到两对.
因此共6对同旁内角.
故选D.
点评:本题考查同旁内角的定义,同旁内角就是在截线的同一侧,在两条被截线的内部的两个角,是需要熟记的内容.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.
(1)图中∠AOF的余角是
 
(把符合条件的角都填出来).
(2)图中除直角相等外,还有相等的角,请写出三对:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根据
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、完成推理填空:如图:直线AB、CD被EF所截,若已知AB∥CD,
求证:∠1=∠2.
请你认真完成下面填空.
证明:∵AB∥CD    (已知),
∴∠1=∠
3
( 两直线平行,
同位角相等
 )
又∵∠2=∠3,(
对顶角相等
 )
∴∠1=∠2 (
等量代换
 ).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度数=
33°
33°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB,CD相交于O点,EO⊥CD,垂足为O点,若∠BOE=50°,求∠AOD的度数.

查看答案和解析>>

同步练习册答案