(本小题满分7分)已知:二次函数y=.
(1)求证:此二次函数与x轴有交点;
(2)若m-1=0,求证方程有一个实数根为1;
(3)在(2)的条件下,设方程的另一根为a,当x=2时,关于n 的函数与的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与、的图象分别交于点C、D,若CD=6,求点C、D的坐标.
(1)证明:令,则有
△= -----------------------------------------------------------1分
∵
∴△≥0 -----------------------------------------------2分
∴二次函数y=与x轴有交点
(2)解:解法一:由,方程可化为
解得: -------------------------------------------------------------------3分
∴方程有一个实数根为1 ----------------------------------4分
解法二:由,方程可化为
当x=1时,方程左边=1+(n-2)+1-n=0
方程右边=0
∴左边=右边 -----------------------------------------------------------3分
∴方程有一个实数根为1 -------------------4分
(3)解:方程的根是:
∴
当=2时,, ----------------------------------5分
设点C()则点D()
∵CD=6 , ∴
∴ -----------------------------------------------------------6分
∴C、D两点的坐标分别为C(3,4),D(3,-2)或C(-1,0),D(-1,-6)------7分
解析:略
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2010-2011学年河南省周口市初三下学期第二十七章相似三角形检测题 题型:解答题
(本小题满分7分)
已知:关于的一元二次方程.
(1)若方程有两个不相等的实数根,求的取值范围;
(2)在(1)的条件下,求证:无论取何值,抛物线y=总过轴上的一个固定点;
(3)若为正整数,且关于的一元二次方程有两个不相等的整数根,把抛物线y=向右平移4个单位长度,求平移后的抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com