精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,直线AB与y轴、x轴分别交于点A、点B,与双曲线数学公式(m>0,x>0)交于C(1,6)、D(3,n)两点,CE⊥y轴于点E,DF⊥x轴于点F.
(1)填空:m=______,n=______;
(2)求直线AB的解析式;
(3)求证:AC=DB.

解:(1)∵点C(1,6)在反比例函数y=上,
∴m=1×6=6;
∵C(1,6)、D(3,n)两点均在反比例函数y=上,
∴1×6=3n,解得n=2.
故答案为:6,2;

(2)设直线AB的解析式为:y=kx+b(k≠0),
∵直线AB过点C(1,6)、D(3,2)

解得:
∴直线AB的解析式为:y=-2x+8;

(3)在直线y=-2x+8中,令x=0,则y=8,
∴A(0,8),
令y=0,则x=4,
∴B(4,0),
∵CE⊥y轴,DF⊥x轴.
∴∠AEC=∠DFB=90°,
∵AE=DF=2,CE=BF=1,
∴△AEC≌△DFB(SAS),
∴AC=DB.
分析:(1)根据反比例函数中k=xy的特点求出k及n的值即可;
(2)设直线AB的解析式为y=kx+b(k≠0),再把A、B两点的坐标代入即可求出k、b的值,进而可求出直线AB的解析式;
(3)在直线y=-2x+8中,令x=0,求出y的值,再令y=0,求出x的值即可得出A、B两点的坐标,CE⊥y轴,DF⊥x轴,故∠AEC=∠DFB=90°,由全等三角形的判定定理即可得出△AEC≌△DFB,由全等三角形的性质即可得出结论.
点评:本题考查的是反比例函数综合题,涉及到用待定系数法求反比例函数的解析式及反比例函数图象上点的坐标特点等知识,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案