精英家教网 > 初中数学 > 题目详情
如图,PA、PB是⊙O的两条切线,A、B是切点,连接AB,直线PO交AB于M.请你根据圆的对称性,写出△PAB的三个正确的结论.
三个结论分别为:
(1)PA=PB
(2)AM=BM
(3)PM⊥AB.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,PT是⊙O的切线,T为切点,PBA是割线,交⊙O于A、B两点,与直径CT交于点D,已知CD=2,AD=3,BD=4,那么PB等于(  )
A.6B.6
15
C.7D.20

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于点C,AC⊥CB交BE于点A,△ABC的外接圆的半径为r.
(1)若∠E=30°,求证:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则∠BOC的度数为(  )
A.130°B.120°C.110°D.100°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中,∠C=90°,CD=6,以CD为直径的⊙O切AB于G,设AG2=y,AC=x.
(1)求y与x的函数关系式,并指出自变量的取值范围.
(2)利用所求出的函数关系式,求当AC为何值时,才能使得BC与⊙O的直径相等?
(3)△ACB有可能为等腰三角形吗?若可能,请求出x的值;若不可能,请说出理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O1和⊙O2外切于点A,直线BD切⊙O1于点B,交⊙O2于点C、D,直线DA交⊙O1于点E.
(1)求证:∠BAC=∠ABC+∠D;
(2)求证:AB2=AC•AE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,Rt△ABC中∠C=90°、∠A=30°,在AC边上取点O画圆使⊙O经过A、B两点,
(1)求证:以O为圆心,以OC为半径的圆与AB相切.
(2)下列结论正确的序号是______.(少选酌情给分,多选、错均不给分)
①AO=2CO;
②AO=BC;
③延长BC交⊙O与D,则A、B、D是⊙O的三等分点.
④图中阴影面积为:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.
(1)求证:AD⊥DC;
(2)若AD=2,AC=
5
,求AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

定义:定点与⊙O上任意一点之间距离的最小值称为点与⊙O之间的距离.现有一矩形ABCD如图所示,AB=14,BC=12,⊙O与矩形的边AB、BC、CD分别相切于点E、F、G,则点A与⊙O之间的距离为______.

查看答案和解析>>

同步练习册答案