精英家教网 > 初中数学 > 题目详情
如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.
(1)求证:BC是⊙O的切线;
(2)已知∠B=30°,CD=4,求线段AB的长.
分析:(1)连结OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;
(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=4
3
,然后在Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=8
3
解答:(1)证明:连结OD,如图,
∵∠BAC的平分线交BC于点D,
∴∠BAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODB=90°,
∴OD⊥BC,
∴BC是⊙O的切线;
(2)解:∵∠B=30°,
∴∠BAC=60°,
∴∠CAD=30°,
在Rt△ADC中,DC=4,
∴AC=
3
DC=4
3

在Rt△ABC中,∠B=30°,
∴AB=2AC=8
3
点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、附加题:如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D,∠B=30°.求证:
(1)AD平分∠BAC;
(2)若BD=3
3
,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D、E,求证:OB=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A,过点C作CE⊥AB于E,CE=8,cosD=
4
5
,则AC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知点C在线段AB的中点,点D、E在线段AB的同侧,AD∥CE,AD=CE.
求证:DC∥EB.

查看答案和解析>>

同步练习册答案