精英家教网 > 初中数学 > 题目详情
如图,已知抛物线经过点B(-2,3),原点O和x轴上另一点A,它的对称轴与x轴交于点C精英家教网(2,0).
(1)求此抛物线的函数关系式;
(2)连接CB,在抛物线的对称轴上找一点E,使得CB=CE,求点E的坐标;
(3)在(2)的条件下,连接BE,设BE的中点为G,在抛物线的对称轴上是否存在点P,使得△PBG的周长最小?若存在,求出P点坐标;若不存在,请说明理由.
分析:(1)根据抛物线的对称轴可得出A点坐标,然后根据O、A、B三点坐标,用待定系数法可求出抛物线的解析式.
(2)可根据B、C的坐标,求出BC的长,然后根据CB=CE,将C点坐标向上或向下平移BC个单位即可得出E点坐标.
(3)本题的关键是确定P点的位置,可取B关于抛物线对称轴的对称点D,连接DG,直线DG与抛物线对称轴的交点即为所求P点的位置.可先求出直线DG的解析式,然后联立抛物线对称轴方程即可求出P点坐标.
解答:精英家教网解:(1)由题意知:A(4,0);
设抛物线的解析式为y=ax(x-4),已知抛物线过B(-2,3);则有:
3=ax(-2)×(-2-4),
a=
1
4

∴抛物线的解析式为:y=
1
4
x2-x;

(2)过点B作BM⊥MC,
∵B点坐标为:(-2,3),C点坐标为:(2,0),
∴MC=4,BM=3,
BC=
BM2+MC2
=5,
∴|CE|=5,
∴E1(2,5),E2(2,-5);

(3)存在.
①当E1(2,5)时,G1(0,4),设点B关于直线x=2的对称点为D,
其坐标为(6,3)
直线DG1的解析式为:y=-
1
6
x+4,
∴P1(2,
11
3

②当E2(2,-5)时,G2(0,-1),直线DG2的解析式为:y=
2
3
x-1
∴P2(2,
1
3

综合①、②存在这样的点P,使得△PBG的周长最小,且点P的坐标为(2,
11
3

或(2,
1
3
).
点评:本题考查了二次函数解析式的确定、等腰三角形的判定、轴对称图形的性质等知识,(3)中能正确找出P点位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-精英家教网2x+1经过抛物线上一点B(2,m),且与y轴.直线x=-2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E,
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:①CB=CE;②D是BE的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过坐标原点,与x轴的另一个交点为A,且顶点M坐标为(1,2),
(1)求该抛物线的解析式;
(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;
(3)当m=2时,点Q为平移后的抛物线的一动点,是否存在这样的⊙Q,使得⊙Q与两坐标轴都相切?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线经过原点O和x轴上的另一点E,顶点为M(2,4),矩形ABCD的顶点A与O重合,AD,AB分别在x,y轴上,且AD=2,AB=3.
(1)求该抛物线对应的函数解析式;
(2)现将矩形ABCD以每秒1个单位长度的速度从左图所示位置沿x轴的正方向匀速平行移动;同时AB上一动点P也以相同的速度从点A出发向B匀速运动,设它们的运动时间为t秒(0≤t≤3),直线AB与抛物线的交点为N,设多边形PNCD的面积为S,试探究S是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
精英家教网

查看答案和解析>>

同步练习册答案