精英家教网 > 初中数学 > 题目详情

【题目】细观察,找规律

下列各图中的MA1NAn平行.

1)图①中的∠A1+A2= ______ 度,

图②中的∠A1+A2+A3= ______ 度,

图③中的∠A1+A2+A3+A4= ______ 度,

图④中的∠A1+A2+A3+A4+A5= ______ 度,

第⑩个图中的∠A1+A2+A3+…+A11= ______

2)第n个图中的∠A1+A2+A3+…+An+1= ______

3)请你证明图②的结论.

【答案】180 360 540 720 1800 2180n度;(3)见解析.

【解析】

1)首先过各点作MA1的平行线,由MA1NA2,可得各线平行,根据两直线平行,同旁内角互补,即可得到结论;
2)根据(1)中的规律,即可得到第n个图中的∠A1+A2+A3+…+An+1的度数;
3)先过A2A2BA1M,根据A2BA1MA3N,可得∠A1+1=180°,∠A3+2=180°,进而得出∠A1+A1A2A3+A3=360°

解:(1

根据平行线的性质,可得图①中的∠A1+A2=180度,

根据平行线的性质,可得图②中的∠A1+A2+A3=360度,
根据平行线的性质,可得图③中的∠A1+A2+A3+A4=540度,
根据平行线的性质,可得图④中的∠A1+A2+A3+A4+A5=720度;

根据平行线的性质,可得第⑩个图中的∠A1+A2+A3+…+A11= 1800
2)根据平行线的性质,可得第n个图中的∠A1+A2+A3+…+An+1=180n度;



3)如图②,过A2A2BA1M
MA1N A3平行,
A2BA1MA3N
∴∠A1+1=180°,∠A3+2=180°
又∵∠1+2=A1A2A3
∴∠A1+A1A2A3+A3=180°+180°=360°

故答案为:(11803605407201800;(2180n度;(3)见解析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCDCB中,∠A=D=72°,ACB=DBC=36°,则图中等腰三角形的个数是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的对角线经过原点,各边分别平行于坐标轴,点C在反比例函数y= 的图象上.若点A的坐标为(﹣2,﹣3),则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,AB=AC. (1)若∠A=36,在△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若∠A36, 当∠A=_____时,在等腰△ABC中画一条线段,能得到2个等腰三角形(不包括△ABC).(写出两个答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为表彰在美术展览活动中获奖的同学,老师决定购买一些水笔和颜料盒作为奖品,请你根据图中所给的信息,解答下列问题;
(1)求出每个颜料盒,每支水笔各多少元?
(2)若学校计划购买颜料盒和水笔共20个,所用费用不超过340元,则颜料盒至多购买多少个?
(3)恰逢商店举行优惠促销活动,具体办法如下:颜料盒按七折优惠,水笔10支以上超出部分按八折优惠,若学校决定购买同种数量的同一奖品,并且该奖品的数量超过10件,请你帮助分析,购买颜料盒合算还是购买水笔合算.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,△为等边三角形,O为坐标原点,点A关于y轴的对称点为D,连接AD,BD,OD,其中AD,BD分别交y轴于点E,P.

(1)如图1,若点B在x轴的负半轴上时,直接写出的度数;

(2)如图2,将△绕点O旋转,且点A始终在第二象限,此时AO与y轴正半轴夹角为,60<<90,依题意补全图形,并求出的度数;(用含的式子表示)

(3)在第(2)问的条件下,用等式表示线段BP,PE,PO之间的数量关系.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】你会求(a1)(a2012+a2011+a2010++a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:

1)由上面的规律我们可以大胆猜想,得到(a1)(a2014+a2013+a2012++a2+a+1)=   

利用上面的结论,求:

222014+22013+22012++22+2+1的值是   

3)求52014+52013+52012++52+5+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分别为BD、BC上的动点,那么CM+MN的最小值是____

查看答案和解析>>

同步练习册答案