精英家教网 > 初中数学 > 题目详情
已知:如图,平面内两点A、B的坐标分别为(-4,1)、(-1,2).
(1)求A、B两点之间的距离;
(2)画出点C,使得点C到A、B两点的距离相等,且点C到∠AOB两边的距离相等(无需写画法,保留画图痕迹).
精英家教网
分析:(1)根据两点间的距离公式进行计算,即A(x,y),B(a,b),则AB=
(x-a)2+(y-b)2

(2)根据到线段两个端点距离相等的点在线段的垂直平分线上和到角两边距离相等的点在角的平分线上.
解答:解:(1)AB=
(-4+1)2+(1-2)2
=
9+1
=
10

(2)
精英家教网
点评:此题综合考查了两点间的距离的求法以及线段垂直平分线的性质和角平分线的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,在直角坐标系内,△ABC的顶点在坐标轴上,关于x的方程x2-4x+m2-2m+5=0有实数根,并且AB、AC的长分别是方程两根的5倍.
(1)求AB、AC的长;
(2)若tan∠ACO=
43
,P是AB的中点,求过C、P两点的直线解析式;
(3)在(2)问的条件下,坐标平面内是否存在点M,使以点O、M、P、C为顶点的四边形是平精英家教网行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图,在△ABC中,AB=AC,D是底边BC上的一点,过点D作BC的垂线,交AB于点E,交AC的延长线于F,则△AEF是等腰三角形.请在解答过程中的括号里填写理由.
解:作AH⊥BC于H
∵AB=AC(已知)
∴∠1=∠2
(等腰三角形三线合一)
(等腰三角形三线合一)

∵DF⊥BC(已知)
∴AH∥DF(平面内垂直于同一条直线的两直线平行)
∴∠1=∠F
(两直线平行,同位角相等)
(两直线平行,同位角相等)

∠2=∠3
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∴∠F=∠3(等量代换)
∴AE=AF
(等角对等边)
(等角对等边)

∴△AEF是等腰三角形.
(2)如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=36°,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当作业宝点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年山东省济南市历下区中考数学一模试卷(解析版) 题型:解答题

已知:如图,平面直角坐标系内的矩形ABCD,顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(P与点A、D不重合),以点P为圆心作⊙P与对角线AC相切于点F,过P、F作直线L,交BC边于点E,当点P运动到点P1位置时,直线L恰好经过点B,此时直线的解析式是y=2x+1
(1)BC、AP1的长;
(2)①求过B、P1、D三点的抛物线的解析式;
②求当⊙P与抛物线的对称轴相切时⊙P的半径r的值;
(3)以点E为圆心作⊙E与x轴相切,当直线L把矩形ABCD分成两部分的面积之比为3:5时,则⊙P和⊙E的位置关系如何?并说明理由.

查看答案和解析>>

同步练习册答案