精英家教网 > 初中数学 > 题目详情
6.观察下列等式:
22-12=3=(2+1)(2-1),
32-22=5=(3+2)(3-2),
42-32=7=(4+3)(4-3),
试计算:19512-19502+19532-19522+…+20142-20132

分析 原式结合解平方差公式展开后进一步化简、计算即可得到结果.

解答 解:根据题意知,
19512-19502+19532-19522+…+20142-20132
=(1951+1950)(1951-1950)+(1953+1952)(1953-1952)+…+(2014+2013)(2014-2013)
=1951+1950+1953+1952+…+2014+2013
=$\frac{(1950+2014)×65}{2}$
=128830.

点评 此题考查了平方差公式,熟练掌握公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线EF交AB于E,交AC于F,求证:AF=$\frac{1}{3}$AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:
(1)$\frac{1}{\sqrt{2}-\sqrt{3}}$+4×$\frac{1}{2\sqrt{2}}$-$\sqrt{(\sqrt{3}-2)^{2}}$
(2)$\sqrt{(-2)^{2}}$+|1-$\sqrt{2}$|+$\sqrt{3}$-$\frac{1}{\sqrt{3}-\sqrt{2}}$
(3)$\sqrt{12}$+$\frac{1}{2-\sqrt{3}}$-(2+$\sqrt{3}$)2
(4)(8-2$\sqrt{15}$)($\sqrt{5}$+$\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列因式分解正确的是(  )
A.-a4+16=-(a2+4)(a2-4)B.$\frac{9}{4}$x2-x-$\frac{1}{9}$=($\frac{3}{2}$x-$\frac{1}{3}$)2
C.a4-2a+1=(a2+1)2D.9a2-1=(9a+1)(9a-1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.设x1,x2是一元二次方程x2-2x-3=0的两根,则x12+x22=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.若定义一种新的运算“△”:a△b=-b2-ab+a,求(-2)△(-1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知a,b互为相反数,c,d互为倒数,x的倒数等于-$\frac{1}{2}$,试求x2-(a+b+cd)x+(a+b)2015+(-cd)2014的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.在数-5,1,-3,-2中任取三个数相乘,最小的积是-30.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在一个不透明的袋子中装有7个大小、形状完全相同的小球,小球上分别标有数字-2,-1,-$\frac{1}{2}$,0,$\frac{1}{2}$,1,2,摇匀后从中随机摸出一个小球,记小球上的数字为a,则a使得关于x的分式方程$\frac{a}{x+1}$-$\frac{2a-x-1}{{x}^{2}+x}$=0没有实数根的概率是$\frac{3}{7}$.

查看答案和解析>>

同步练习册答案