【题目】如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
【答案】(1)4.8.(2)t为3或;(3)当t为2.4秒或秒或秒时,△CPQ为等腰三角形.
【解析】
试题分析:(1)先根据勾股定理求出AB的长,再由三角形的面积公式即可得出结论;
(2)先用t表示出DP,CQ,CP的长,再分PQ⊥CD与PQ⊥AC两种情况进行讨论;
(3)根据题意画出图形,分CQ=CP,PQ=PC,QC=QP三种情况进行讨论.
解:(1)∵∠ACB=90°,AC=8,BC=6,
∴AB=10.
∵CD⊥AB,
∴S△ABC=BCAC=ABCD.
∴CD===4.8.
∴线段CD的长为4.8.
(2)由题可知有两种情形,
设DP=t,CQ=t.则CP=4.8﹣t.
①当PQ⊥CD时,如图a
∵△QCP∽△△ABC
∴=,即=,
∴t=3;
②当PQ⊥AC,如图b.
∵△PCQ∽△ABC
∴=,即=,解得t=,
∴当t为3或时,△CPQ与△△ABC相似;
(3)①若CQ=CP,如图1,
则t=4.8﹣t.
解得:t=2.4.
②若PQ=PC,如图2所示.
∵PQ=PC,PH⊥QC,
∴QH=CH=QC=.
∵△CHP∽△BCA.
∴=.
∴=,解得t=.
③若QC=QP,
过点Q作QE⊥CP,垂足为E,如图3所示.
同理可得:t=.
综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.
科目:初中数学 来源: 题型:
【题目】下列事件中是必然事件的是( )
A.打开电视,它正在播广告
B.掷两枚质地均匀的骰子,点数之和一定大于6
C.某射击运动员射击一次,命中靶心
D.早晨的太阳从东方升起
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对下列各式进行因式分解:
(1)2x(a-b)-(b-a); (2)x4-9x2;
(3)2mx2-4mxy+2my2; (4)a2-a-6.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:
(1)甲车间每天加工大米 吨,a= .
(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.
(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,边AE上有一动点P(不与A,E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.
(1)直接写出 D,E 两点的坐标,D( ),E( )
(2)求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,S有最大值?
(3)当t为何值时,DP平分∠EDA?
(4)当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,∠BAC=90°,AB=AC,CE平分∠ACB交AB于点E。
(1)∠B= 度.
(2)如图9,若点D在斜边BC上,DM垂直平分BE,垂足为M。求证:BD=AE;
(3)如图10,过点B作BF⊥CE,交CE的延长线与点F。若CE=6,求△BEC的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】回答下列问题:
(1)如图所示的甲、乙两个平面图形能折成什么几何体?________________.
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 “十一”黄金周期间,西安大唐芙蓉园在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)。
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人数变化 (万人) | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.4 |
(1)若9月30日的游客人数为万人,则10月2日的游客人数为_______万人;
(2)七天内游客人数最大的是10月_______日;
(3)若9月30日游客人数为3万人,门票每人120元。请求出黄金周期间西安大唐芙蓉园门票总收入是多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院惠农的指示精神,最近市政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量(千克)与销售价(元/千克)有如下关系:.设这种产品每天的销售利润为(元).
(1)求与之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com