精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,抛物线y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
经过原点O,点B(-2,n)在这条抛物线上.
(1)求抛物线的解析式;
(2)将直线y=-2x沿y轴向下平移b个单位后得到直线l,若直线l经过B点,求n、b的值;
(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.
(1)∵拋物线y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
经过原点,
∴m2-6m+8=0.
解得m1=2,m2=4.
由题意知m≠4,
∴m=2.
∴拋物线的解析式为y=
1
4
x2-x


(2)∵点B(-2,n)在拋物线y=
1
4
x2-x
上,
∴n=3.
∴B点的坐标为(-2,3).
∵直线l的解析式为y=-2x-b,直线l经过B点,
∴3=-2(-2)-b.
∴b=1.

(3)∵拋物线y=
1
4
x2-x
的对称轴为直线x=2,直线l的解析式为y=-2x-1,
∴拋物线y=
1
4
x2-x
的对称轴与x轴的交点C的坐标为(2,0),
直线l与y轴、直线x=2的交点坐标分别为D(0,-1)、E(2,-5).
过点B作BG⊥直线x=2于G,与y轴交于F.
则BG=4.
在Rt△BGC中,CB=
CG2+BG2
=5

∵CE=5,∴CB=CE.
过点E作EH⊥y轴于H.
则点H的坐标为(0,-5).
∵点F、D的坐标为F(0,3)、D(0,-1),
∴FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°,
∵在△DFB和△DHE中
DF=DH
∠BFD=∠EHD
BF=EH

∴△DFB≌△DHE(SAS).
∴DB=DE.
∵PB=PE,
∴点P在直线CD上.
∴符合条件的点P是直线CD与该抛物线的交点.
设直线CD的解析式为y=kx+a.
将D(0,-1)、C(2,0)代入,
a=-1
2k+a=0.

解得
a=-1
k=
1
2
.

∴直线CD的解析式为y=
1
2
x-1

设点P的坐标为(x,
1
4
x2-x
),
1
2
x-1
=
1
4
x2-x

解得x1=3+
5
x2=3-
5

y1=
1+
5
2
y2=
1-
5
2

∴点P的坐标为(3+
5
1+
5
2
)或(3-
5
1-
5
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的图象如图,则它的函数表达式是______.当x______时,y>0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,过A、C两点的抛物线y=x2+bx+c上有一点M,已知A(-1,0),C(0,-2),
(1)这个抛物线的解析式为______;
(2)作⊙M与直线AC相切,切点为C,则M点的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c经过A(-3,0),B(1,0),C(3,6)三点,且与y轴交于点E.(1)求抛物线的解析式;
(2)若点F的坐标为(0,-
1
2
),直线BF交抛物线于另一点P,试比较△AFO与△PEF的周长的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.
(1)求a,c的值;
(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;
(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店将进价为100元的某商品按120元的价格出售,可卖出300个;若商店在120元的基础上每涨价1元,就要少卖10个,而每降价1元,就可多卖30个.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为获利最大,商店应将价格定为多少元?
(3)为了让利顾客,在利润相同的情况下,请为商店选择正确的出售方式,并求出此时的售价.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一个小服装厂生产某种风衣,售价P(元/件)与月销售量x(件)之间的关系为P=160-2x,生产x件的成本R=500+30x元.
(1)该厂的月产量为多大时,获得的月利润为1300元?
(2)当月产量为多少时,可获得最大月利润?最大利润是多少元?

查看答案和解析>>

同步练习册答案