精英家教网 > 初中数学 > 题目详情
4.已知,如图,△ABC为等边三角形,CD∥AB.点E、F分别在BC延长线及CD上,∠EAF=60°,联结EF.求证:EF=AF.

分析 由等边三角形的性质得出AB=AC,∠B=∠BAC=60°,证出∠BAE=∠CAF,由平行线的性质得出∠ACF=∠BAC=∠B,由ASA证明△ABE≌△ACF,得出对应边相等即可.

解答 证明:∵△ABC为等边三角形,
∴AB=AC,∠B=∠BAC=60°,
∵∠EAF=60°,
∴∠BAC+∠CAE=∠EAF+∠CAE,
即∠BAE=∠CAF,
∵CD∥AB,
∴∠ACF=∠BAC=∠B,
在△ABE和△ACF中,
$\left\{\begin{array}{l}{∠BAE=∠CAF}\\{AB=AC}\\{∠B=∠ACF}\end{array}\right.$,
∴△ABE≌△ACF(ASA),
∴AF=AE,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴AF=EF.

点评 本题考查了等边三角形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)样本容量是50,并补全直方图;
(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;
(3)已知A组发言的学生中恰好有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.
 组别 课堂发言次数n
 A 0≤n<3
 B 3≤n<6
 C 6≤n<9
 D 9≤n<12
 E 12≤n<15
 F 15≤n<18

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.若关于x的方程x2-2x+m=0有且只有1个实数根,则m=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知m,n满足m+n=4,mn=k-1,设y=(m-n)2
(1)当k被5整除时,求证:y能被20整除;
(2)若m,n都为非负数,y存在最大值和最小值吗?若存在,请求之;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知a+$\frac{3}{4}$=b-$\frac{3}{4}$=$\frac{c}{2}$=2001,且a+b+c=2001k,那么k的值为(  )
A.$\frac{1}{4}$B.4C.-$\frac{1}{4}$D.-4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.小强由于粗心,把“A+B”看成“A-B”算出的结果为-7x2+10x+12,其中B=4x2-5x-6,试求出A+B的正确结果.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,平面直角坐标系中,点P(6,0),以P为圆心,10为半径的圆分别交坐标轴于点A、B、C、D.
(1)求点A的坐标;
(2)设点D关于y轴的对称点是E(n,0),若点F(n+1,0),连接AF.求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.根据以下叙述列式:
(1)甲车用v(km/h)的速度跑完AB两地的路程用了1小时,乙车每小时比甲车慢5(km),乙车跑完AB两地的路程需要多少小时?
(2)某批发商用a(元/个)的价格,共花600元购进一种畅销商品,然后以比进价每个高5元的价格全部卖出,批发商共赚多少元?

查看答案和解析>>

同步练习册答案