精英家教网 > 初中数学 > 题目详情

【题目】某中学九年级学生开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度,如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进20米到达点D,又测得点A的仰角为45°,请根据这些数据,求这幢教学楼的高度.(最后结果精确到1米,参考数据 ≈1.732)

【答案】解:由已知,可得:∠ACB=30°,∠ADB=45°,
∴在Rt△ABD中,BD=AB.
又在Rt△ABC中,
∵tan30°= =
= ,即BC= AB.
∵BC=CD+BD,
AB=CD+AB,
即( ﹣1)AB=20,
∴AB=10( +1)≈27米.
答:教学楼的高度为27米
【解析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC﹣BD=60构造方程关系式,进而可解,即可求出答案.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0(

A.没有实根
B.只有一个实根
C.有两个实根,且一根为正,一根为负
D.有两个实根,且一根小于1,一根大于2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+8x轴、y轴分别交于A.B两点,MOB上一点,若直线AB沿AM折叠,B恰好落在x轴上的点C处,则点M的坐标是(

A. (0,4) B. (0,3) C. (﹣4,0) D. (0,﹣3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A是双曲线y= (x>0)上一点,过点A作AB∥x轴,交双曲线y=﹣ (x<0)于点B,若OA⊥OB,则 的值为(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,CD的右侧,BE平分ABC,DE平分ADC,BE、DE所在直线交于点E,ADC=70°.

(1)EDC的度数;

(2)ABC=n°,BED的度数(用含n的代数式表示);

(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,每小正方形的边长为个单位,每个小方格的顶点叫格点.

(1)画出边上的中线

(2)画出向右平移个单位后得到的

(3)图中的关系是

(4)能使的格点(不同于点),共有 个,在图中分别用表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD,DA平分∠BDC,A=C.

(1)试说明:CEAD;

(2)若∠C=30°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACBGACGDEABEDFACF

1)在图(1)中,DBC边上的中点,判断DE+DFBG的关系,并说明理由.

2)在图(2)中,D是线段BC上的任意一点,DE+DFBG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.

3)在图(3)中,D是线段BC延长线上的点,探究DEDFBG的关系.(不要求证明,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】著名的瑞士数学家欧拉曾指出:可以表示为四个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为四个整数平方之和,即 ,这就是著名的欧拉恒等式,有人称这样的数为不变心的数.实际上,上述结论可减弱为:可以表示为两个整数平方之和的甲、乙两数相乘,其乘积仍然可以表示为两个整数平方之和.

【动手一试】

试将改成两个整数平方之和的形式.

【阅读思考】

在数学思想中,有种解题技巧称之为无中生有.例如问题:将代数式改成两个平方之差的形式.解:原式

【解决问题】

请你灵活运用利用上述思想来解决不变心的数问题:将代数式改成两个整数平方之和的形式(其中abcd均为整数),并给出详细的推导过程﹒

查看答案和解析>>

同步练习册答案