精英家教网 > 初中数学 > 题目详情

如图,测得BC=180m,CE=50m,CD=60m,求河宽AB.

解:∵∠C=∠B=90°,∠EDC=∠ADB,
∴△CDE∽BDA,
=
∴AB=•CE,
∵BC=180m,CD=60m,
∴BD=BC-CD=180-60=120(m),
又∵CE=50m,
∴AB=×50=100(m),
答:河宽AB为100m.
分析:先判定出△CDE和BDA相似,然后相似三角形对应边成比例列式求解即可.
点评:本题考查了相似三角形的应用,主要利用了想时三角形的判定与相似三角形对应边成比例的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•连云港)已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,
2
≈1.41,
5
≈2.24)

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏连云港卷)数学(带解析) 题型:解答题

已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏连云港卷)数学(解析版) 题型:解答题

已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

 

查看答案和解析>>

科目:初中数学 来源:江苏中考真题 题型:解答题

已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km,参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

科目:初中数学 来源:2012年江苏省连云港市中考数学试卷(解析版) 题型:解答题

已知B港口位于A观测点北偏东53.2°方向,且其到A观测点正北方向的距离BD的长为16km,一艘货轮从B港口以40km/h的速度沿如图所示的BC方向航行,15min后达到C处,现测得C处位于A观测点北偏东79.8°方向,求此时货轮与A观测点之间的距离AC的长(精确到0.1km).(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

同步练习册答案