精英家教网 > 初中数学 > 题目详情
实数a,b,c满足:a2+6b=-17,b2+8c=-23,c2+2a=14,则a+b+c的值是(  )
分析:将已知三个等式的左右分别相加,然后根据配方法将a2+6b+b2+8c+c2+2a转化为偶次方的和的形式(a+1)2+(b+3)2+(c+4)2=0;最后根据非负数的性质解答即可.
解答:解:∵a2+6b=-17,b2+8c=-23,c2+2a=14,
∴a2+6b+b2+8c+c2+2a=-26,
∴(a2+2a+1)+(b2+6b+9)+(c2+8c+16)=0,
即(a+1)2+(b+3)2+(c+4)2=0,
∴a+1=0,b+3=0,c+4=0,
∴a=-1,b=-3,c=-4,
∴a+b+c=-8.
故选C.
点评:本题考查了配方法的应用、非负数的性质:偶次方,解题的关键是根据完全平方和公式将代数式转化为偶次方的和的形式,求出a,b,c的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知非负实数x,y,z满足
x-1
2
=
2-y
3
=
z-3
4
,记W=3x+4y+5z.求W的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知实数a、b、c满足
1
2
|a-b|+
2b+c
+c2-c+
1
4
=0
,则a(b+c)=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知实数a、b、c满足a-b+c=0,那么关于x的方程ax2+bx+c=0一定有根(  )
A、x=1B、x=-1C、x=±1D、都不对

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程x2+(2k+1)x+k-1=0的两个实数根x1,x2满足x1-x2=4k-1,则实数k的值为(  )
A、1,0
B、-3,0
C、1,-
4
3
D、1,-
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

若实数x,y,z满足:
xy
x+2y
=1
yz
y+2z
=2
zx
z+2x
=3
,则x=
 

查看答案和解析>>

同步练习册答案