精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点EEGCDAF于点G,连接DG

1)求证:四边形EFDG是菱形;

2)若AG=7GF=3,求DF的长

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)连接DEAFH,先根据DF=EGDFEG,判定四边形DFEG是平行四边形,再根据GFDE,即可得出四边形EFDG是菱形;

2)根据条件得到FH=GF=AF=10,再根据RtADF中,DHAF,运用射影定理即可得到DF2=FH×FA,进而得出DF的长.

试题解析: (1)如图,连接DEAFH

由折叠可得,AFDEDF=EFDFG=EFG

EGCD

∴∠DFG=EGF

∴∠EFG=EGF

EG=EF

DF=EG

DFEG

∴四边形DFEG是平行四边形,

GFDE

∴四边形EFDG是菱形;

(2)∵四边形EFDG是菱形,

FH=GF=

AG=7GF=3

AF=10

RtADF中,DHAF

DF2=FH×FA

DF==.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ABC90°ABBC,点D是线段AB上的一点,连接CD,过点BBGCD,分别交CDCA于点EF,与过点A且垂直于AB的直线相交于点G,连接DF.给出以下四个结论:①②若点DAB的中点,则AF=AB③当BCFD四点在同一个圆上时,DFDB;④若,,其中正确的结论序号是( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为 m?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017山东省菏泽市,第20题,7分)如图,一次函数y=kx+b与反比例函数的图象在第一象限交于AB两点,B点的坐标为(3,2),连接OAOB,过BBDy轴,垂足为D,交OAC,若OC=CA

(1)求一次函数和反比例函数的表达式;

(2)求AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20208月连淮扬镇铁路正式通车,高邮迈入高铁时代,动车的平均速度为(动车的长度不计),高铁的平均速度为(高铁的长度不计),扬州市内依次设有6个站点,宝应站、高邮北站、高邮高铁站、邵伯站、江都站、扬州高铁站,假设每两个相邻站点之间的路程都相等,已知一列动车、一列高铁同时经过宝应站开往扬州高铁站,若中途不停靠任何站点,到达扬州高铁站时高铁比动车将早到10分钟

1)求宝应站到扬州高铁站的路程;

2)若一列动车6:00从宝应站出发,每个站点都停靠4分钟,一列高铁6:18从宝应站出发,只停靠高邮北站、江都站,每个站点都停靠4分钟.

①求高铁经过多长时间追上动车;

②求高铁经过多长时间后,与动车的距离相距20千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在数轴上A点表示数,B点示数,C点表示数是最小的正整数,且满足

(1)=__________=__________=__________

(2)若将数轴折叠,使得A点与C点重合,则点B与数__________表示的点重合;

(3)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动,假设秒钟过后,A、B、C三点中恰有一点为另外两点的中点,求的值;

(4)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小聪同学发现:当点CB点右侧时,BC+3AB的值是个定值,求此时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嫦娥四号探测器于201913日,成功着陆在月球背面,通过鹊桥中继星传回了世界第一张近距离拍摄的月背影像图,开启了人类月球探测新篇章.当中继星成功运行于地月拉格朗日L2点时,它距离地球约1500000km.用科学记数法表示数1500000( )

A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长方形运动场被分隔成个区, 区是边长为的正方形, 区是边长为的正方形.

(1)列式表示每个区长方形场地的周长,并将式子化简;

(2)列式表示整个长方形运动场的周长,并将式子化简;

(3)如果 ,求整个长方形运动场的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为每小时100千米,设客车出发时间为t(小时).

探究  若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式及自变量取值范围,并计算当y1=240千米时y2的値.

发现  (1)设点CA城与B城的中点,AC=AB,通过计算说明:哪个车先到达C城?该车到达C后再经过多少小时,另一个车会到达C?

(2)若两车扣相距100千米时,求时间t.

决策  已知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:

方案一:继续乘坐出租车到C城,加油后立刻返回B城,出租车加油时间忽略不计;

方案二:在D处换乘客车返回B城.

试通过计算,分析小王选择哪种方式能更快到达B城?

查看答案和解析>>

同步练习册答案